При достаточно большой энергии, когда Е/E0 4, и даже при максимальном значении потенциальной энергии 4 sin2 (φ/2) (при φ = π потенциальная энергия равна 4) кинетическая энергия (φ')2/ω02 не равна нулю, и маятник проскакивает верхнюю точку. Теперь он совершает не колебательное, а вращательное движение.
Это движение не равномерно, внизу скорость маятника максимальна, а в верхнем положении минимальна. На наших графиках это движение изображается кривыми 3. Если маятник вращается против часовой стрелки, значение угла φ неограниченно возрастает с ростом времени (фазовая траектория 3). Если он вращается по часовой стрелке, то значение угла неограниченно уменьшается (фазовая траектория 3).
Наиболее интересно для нас движение с энергией Е, в точности равной 4Е0. В этом случае закон сохранения энергии дает простое соотношение
Если маятник находится в верхнем положении, т. е. φ = π или φ = -π, то его скорость равна нулю, и он может пребывать в состоянии покоя. График такого движения: φ(t) = π при всех t, или φ(t) = -π при всех t. На фазовой плоскости точки φ = π, φ' = 0 и φ = -π, φ' = 0 — это точки покоя (или точки равновесия). Ясно, что эти точки равновесия, в отличие от нижней точки равновесия маятника, неустойчивы. Если чуть-чуть увеличить полную энергию, скажем, резким движением слегка толкнуть маятник, то он начнет совершать вращательное движение. Если уменьшить полную энергию, скажем, медленно сдвинуть и отпустить маятник, то он начнет совершать колебательные движения с амплитудой, близкой к π. В обоих случаях он далеко уходит от положения равновесия. Если бы мы проделали то же самое в нижнем положении равновесия, то ясно, что маятник начал бы колебаться около этого положения с небольшой амплитудой. Точка φ = 0, φ' = 0 на фазовой плоскости — устойчивая точка покоя.
При Е = 4Е0 возможно и другое движение маятника. Пусть при t = 0 угловая скорость φ' равна 2ω0. Тогда из формулы (4.3) следует, что Е/E0 = 4, и маятник движется к верхней точке так, что его скорость в положении φ равна
φ' = 2ω0cos φ/2 . (4.6)
Чем ближе φ к π, тем меньше скорость. Если угол отклонения очень близок к π, то удобно обозначить малый угол отклонения π - φ через 2α. Тогда cos (φ/2) = cos (π/2 - α) = sin α α. Скорость изменения угла φ равна, очевидно, -2α'. Поэтому между α' и α при малом значении угла α есть простое соотношение
α' -ω0α, (4.7)
которое следует из (4.6) при малом значении π - φ.
В уравнении (4.7) можно узнать уравнение, описывающее радиоактивный распад, если считать α(t) массой нераспавшегося к моменту времени t радиоактивного вещества. Решение уравнения радиоактивного распада хорошо известно:
α(t) = α0е-ω0t.
Здесь α0 — начальное количество вещества, α(0) = α0, основание натуральных логарифмов е = 2,718281828... В Приложении показано, как получить это решение чисто геометрически. Здесь нам важно лишь то, что оно при возрастании t быстро убывает, но никогда не обращается в нуль. Это означает, что маятник ни за какое конечное время не придет в верхнее положение равновесия. Для понимания качественного характера движения нам больше ничего и не нужно. Можно сразу нарисовать приблизительный вид графика движения с энергией Е= 4Е0. Правда, наши рассуждения относились лишь к положительным значениям времени t, но левую часть кривой легко построить, вспомнив, что маятник качается совершенно симметрично относительно нижнего положения (для сравнения тонкой кривой изображено колебательное движение с энергией, меньшей 4Е0). Эта симметрия приводит к тому, что энергетическая и фазовая диаграммы симметричны относительно вертикальной оси. Если в какой-то момент t маятник находится в положении φ(t), то в момент -t он находился в положении φ(-t) = -φ(t) (напомним, что время отсчитывается так, что в момент t = 0 маятник находится в нижнем положении, см. рис. 4.10).
Фазовая диаграмма симметрична и относительно горизонтальной оси. Это значит, что всякому качанию слева направо, когда φ возрастает, соответствует точно такое же качание справа налево. График такого движения изображается кривой, симметричной относительно вертикальной оси (эти кривые изображены на рис. 4.10 штриховой линией).
Итак, мы нарисовали полный фазовый портрет маятника (рис. 4.9). Важную роль играют на нем кривые 2 и которые отделяют фазовые траектории колебательных движений (кривая 1) от фазовых траекторий вращательных движений (кривые 3, 3) и называются сепаратрисами (от лат. seрaro — отделять). Эти кривые и соответствующие им графики движения играют, как мы скоро увидим, большую роль в теории солитонов. Форма солитона Френкеля и Конторовой (как и многих других солитонов) определяется кривой, совпадающей с графиком движения, соответствующим сепаратрисе.
«Солитонное» решение
уравнения маятника
Общие решения нелинейного уравнения маятника можно выразить через так называемые эллиптические функции Якоби (мы их уже упоминали, когда говорили о форме нелинейных волн, (рис. 2.2).
Замечательно, однако, что движение, соответствующее сепаратрисе фазовой диаграммы, можно записать с помощью элементарных функций. Геометрический вывод этого решения приведен в Приложении, где показано, что для решения φ(t), обращающегося в нуль при t = 0, выполнено простое соотношение
Общее решение уравнения (4.6) можно получить отсюда сдвигом начала отсчета времени, т. е. заменой в формуле (4.8) t на t0. Чтобы хорошо понять это решение, выразим φ непосредственно через t:
График этой функции легко построить, вспомнив, как выглядят графики показательной функции и aгctg (рис. 4.11, 4.12). Когда t растет от - до +, α убывает от + до 0.
При этом aгctg α пробегает значения от π/2 до 0, а φ меняется от -π до +π. Таким образом, написанное решение соответствует сепаратрисе, идущей из точки -π в точку +π.
Вспоминая, что φ удовлетворяет уравнению (4.6), после несложных тригонометрических преобразований можно найти, что
Здесь мы ввели в употребление так называемый гиперболический косинус
ch(ω0t) = 1/2(eω0t + е-ω0t),
часто встречающийся в теории солитонов. (Геометрическое определение этой и других гиперболических функций можно найти в Приложении.) Легко построить график этой функции (рис. 4.13).
Теперь легко получить графики φ(t) и φ'(t), описывающие особое движение маятника (рис. 4.14). Эти две замечательные и простые функции стоит как следует изучить и запомнить.
Движения маятника и «ручной» солитон
Качественный характер изученных нами движений маятника полезно изучить на простых опытах. Проще всего сделать это с помощью обычного велосипедного колеса. Перевернув велосипед, можно сделать из переднего колеса неплохой маятник, способный совершать колебательные и вращательные движения. Для этого прикрепим на ободе кусочек пластилина или какой-либо иной грузик. Если колесо не сбалансировано, лучше его сначала сбалансировать, так чтобы оно могло покоиться в любом положении. Внешняя сила, действующая на колесо, определяется только дополнительным грузиком, а в движении участвует вся его масса.
Чтобы оценить период движения колеса, приближенно заменим его однородным тонким обручем с радиусом, примерно равным расстоянию l от центра до внутренней части обода, и с массой, примерно равной массе всего колеса М. Приложенная сила равна -mg sin φ, а ее момент равен mgl sin φ, где m — масса дополнительного грузика, а φ — угол отклонения его от вертикали, отсчитываемый точно так же, как и для обычного маятника. Мысленно разделим обруч на n одинаковых маленьких частей. Если к каждой приложить силу -(1/n) mg sin φ, направленную по касательной к обручу, то приложенный полный момент силы равен -mgl sin φ, так что такое «разделение» внешней силы допустимо. Для каждой маленькой части легко написать уравнение движения