Гипотеза, предложенная в первой части этой главы, говорит о том, что выбор, сделанный Хеббом, был единственно возможным и что возникновение структур возбуждения должно зависеть, конечно, от возбуждения специфических клеток, но что эти динамические структуры становятся в какой-то степени независимыми от клеточных единиц, так как определяются анатомией соединений, синаптическими и дендритными микроструктурами мозга. При соответствующих условиях эти узоры, образуемые с помощью синаптических систем, служат неврологическими эквивалентами единиц восприятия. Я согласен с предположением Хебба о том, что то, что мы осознаем, во многом зависит от прошлого опыта организма, но я буду отличать это явление от того непосредственного психологического настоящего, принимающего форму Образов, на котором основана предлагаемая гештальтпсихологией целостная концепция восприятия. Хебб смешал историческое развитие процесса узнавания с тем, что составляет содержание Образов. Чтобы составить программу, которая позволит компьютеру произвести вычисления, требуются многие часы работы, сама же машина выполнит эти вычисления за микросекунды. Необходимо много времени, чтобы научиться узнавать незнакомые структуры, но даже младенцы в возрасте нескольких недель (см. гл. VIII) могут правильно определять относительный размер фигур, находящихся на различном расстоянии (константность величины), и дифференцировать фигуры в различном положении (константность формы). Научение – это только часть проблемы узнавания. Гештальтисты в значительной мере были правы в своем нативизме. Существуют врожденные нервные механизмы формирования Образов, но гештальтисты были неправы, когда утверждали, что это единственный механизм восприятия. Однако сейчас маятник качнулся далеко в другую сторону и существует опасность, что целый ряд интересных явлений выпадет из поля зрения исключительно из-за интереса к проблеме, каким образом мы учимся распознавать.
Когда Хебб писал свою книгу, существовали две основные точки зрения на функционирование нервной системы. Одна из них была хорошо обоснована, другая – нет. Первая касалась вопросов генерации нервных импульсов и их передачи через «инапсы. Другая имела отношение к электрическим полям, создаваемым потенциалами мозга. В. Кёлер построил свою гешталь-тистскую концепцию на основе этих неироэлектрических полей и потерпел неудачу, доказывая их повсеместное существование десять лет спустя после опубликования Хеббом своих взглядов.
Рис. VI-8. Сдвиг постоянного потенциала (ПП) в слуховой коре в ответ на звуковую стимуляцию. «Активный электрод» – на твердой оболочке мозга над средней эктосильвиевой извилиной; другой электрод – на фронтальной надкостнице. Отклонение вверх означает негативность на твердой оболочке относительно кости. Л – сдвиг ПП в ответ на белый шум; Б – сдвиг ПП в ответ на тон 4000 гц; В – сдвиг ПП, возникающий в ответ на белый шум, возвращается к нулевой линии до прекращения звуковой стимуляции; Г – ответ на звуковые щелчки (50 в сек) и его возвращение к нулевой линии до прекращения стимуляции (Gumnit, 1960).
Я был счастлив, что смог принять участие в этих исследованиях. Экспериментальное наступление оказалось в целом успешным (КбЫег, 1958), и исследователи в моей лаборатории, а также в других лабораториях, регистрируя и вызывая в мозгу электрические поля постоянного тока, установили -их корреляции с функциями мозга и поведением (Gumnit, 1961; Stamm, 1961; Morrell, 1961). Всякий раз при стимуляции организма через тот или другой сенсорный вход (рис. VI-8) в соответствующих ограничейных областях мозга возникал сдвиг постоянного потенциала. Прямое раздражение мозга постоянным током могло задержать или ускорить научение в зависимости от полярности прикладываемого потенциала. Но я не согласился с Кёлером, когда он стал настаивать на связи между электрическими полями постоянного тока и восприятием. Позднее, когда я закончил эксперименты, в которых я накладывал на поверхность коры мозга алюминиевую пасту, мы снова смогли прийти с ним к согласию. Эксперименты показали, что различение структуры сигналов не нарушается, не-смотря на заметные изменения постоянного потенциала и ЭЭГ (рис. VI-9, VI-10).
А Б
Рис. VI- 9. A – фотография мозга обезьяны со вживленными з него серебряными дисками, содержащими пасту; Б – фотография того же самого мозга после снятия дисков. В данном случав вживлепие было произведено в теменную кору. Другие эксперименты были проведены на затылочной, височной и лобной коре тем же способом или методом множественных точечных инъекций в кору алюминиевой пасты (Stamm and Warren, 1961).
Рис. VI-10. Образец записи ЭЭГ у двух обезьян со вживленными дисками, как показано на рис. VI-9. А и Б – участки записи ЭЭГ до операции, В и Г – спустя 5 месяцев после вживления дисков с алюминиевой пастой. Биполярное отведение: L – левое, R – правое полушарие, F – лобная кора, Т – височная, Р – задняя темен-лая, V – макушка. Калибровка, как показано (Stamm and Warren. 1961).
Кёлер никогда не признавал экспериментов, проведенных Лешли (Lashley, Chow and Semmes, 1951), в которых для опровержения его теории и разрушения нейроэлектрических полей использовалась золотая фольга. Не признавал он также и экспериментов Сперри с перекрестом нервных волокон (Sperry, Miner and Meyers, 1955), в которых использовались изолирующие полоски слюды. Но когда он познакомился с результатами эксперимента со вживлением дисков с алюминиевой пастой, он воскликнул: «Это опровергает не только мою теорию поля постоянного тока, но и всякую другую современную неврологическую теорию восприятия!»
Позвольте мне коротко остановиться на тех данных, которые накопились в ходе этой дискуссии, чтобы рассеять такой мрачный взгляд на неврологию восприятия. Как было подробно показано в первой части книги, нервный импульс не является единственной важной электрической характеристикой нервной ткани. Другой характеристикой является микроструктура медленных потенциалов. Хотя последние близки к кёлеровским полям постоянного тока, они существенно отличаются от них тем, что они не диффузны, а строго локализованы на соединениях между нейронами или на дендритах и могут даже иметь вид миниатюрных спайков, которые чаще всего при распространении ослабевают. Проведение нервного импульса в любом месте нервной системы ведет к образованию на соединениях микроструктуры медленных потенциалов. Когда нервные импульсы достигают синапсов, генерируются постсинаптические потенциалы. Они никогда не бывают единичными, а образуют динамические структуры афферентных воздействий. Когда постсинаптические потенциалы возникают в дендритных полях мозга, они часто оказываются недостаточно большими, чтобы немедленно вызвать разряд нервного импульса. Поэтому динамические структуры постсинаптических потенциалов образуют узор, который имеет сходство с фронтом волны. Но этот рисунок медленных потенциалов не является каким-то таинственным фоном, миражем, наложенным на известную нервную функцию. Он представляет собой микроструктуру, состоящую из классических нейронных медленных потенциалов, возникающих в результате прихода нервных импульсов, ожидающих выхода через аксон.
Таким образом, структуры, образуемые на входе и выходе и принявшие форму микроструктуры медленных потенциалов, становятся источником третьей силы в нервной клетке. Все это говорит против концепции «плавающего» поля как возможного нейрофизиологического механизма, обусловливающего целостный характер восприятия. Потребность в этом третьем источнике была обнаружена до его открытия. Лешли глубоко волновала следующая проблема:
«Здесь мы сталкиваемся с такой дилеммой. Нервные импульсы проводятся по определенным, строго ограниченным путям, по сенсорным и моторным нервам и в центральной нервной системе от клетки к клетке и через-определенные межклеточные связи. Однако кажется, что все поведение детерминировано массой возбуждения, формой, отношением или соотношением возбуждения внутри общих полей активности безотносительно к отдельным нервным клеткам. Важна динамическая структура возбуждения, а не отдельный элемент. Какой тип нервной организации способен отвечать на такую структуру возбуждения при отсутствии специфических, ограниченных путей, обеспечивающих его проведение? Эта проблема имеет отношение к деятельности всей нервной системы, и необходимо сформулировать какую-нибудь гипотезу, чтобы дать направление дальнейшему исследованию» (Lashley, 1942, стр. 306).
Таким образом, Лешли предположил, что модель такой динамической структуры, возникающей в результате интерференции, была бы более адекватным объяснением этого феномена, чем любая из противоположных точек зрения. Однако он не имел ясного представления о такой модели, о том, каким образом может работать этот механизм. Он никогда не говорил о том, что «волны», генерируемые в результате прихода нервных импульсов, образованы хорошо известными классическими нейрофизиологическими процессами: синаптическими и дендритными потенциалами. Таким образом, он никогда не приводил аргументов в пользу существования микроструктуры соединений, в какой-то мере независимой от проведения нервных импульсов, то есть идеи, которая развивается на страницах данной книги. Лешли слишком связывал волновые формы с циркуляцией возбуждения по нейронам, которую он считал недостаточной, и в то же время разграничивал их, когда нужно было объяснять гибкость приспособления. Таким образом, он совсем не развил своей догадки. А ведь даже самая проницательная догадка, чтобы стать очевидной, нуждается в доказательстве. Прервем же на время наше изложение и приведем цитату Лешли, которая дает возможность проследить за ходом его мысли.