Рейтинговые книги
Читем онлайн 9. Квантовая механика II - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 60

Объединенные состояния суть | а, mа; b, mb>, их всего (2ja+1)(2jb+1). Какие же состояния с полным спином / мы обнаружим?

Полная z-компонента М момента количества движения рав­няется mа+mb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшое М является единст­венным; оно отвечает значениям ma=jaи mb=jbи равно по­просту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jb:

J=Ммакс=ja+jb.

Следующему значению М, меньшему чем Ммакс на единицу, будут соответствовать два состояния (либо mа, либо mbменьше своих максимальных значений на единицу). Из них должно быть образовано одно состояние, принадлежащее совокупности с J=ja+jb, и останется еще одно, которое будет принадлежать новой совокупности с J=ja+jb-1. Следующее значение М (третье сверху) можно составить тремя путями (из ma=ja 2, mb=jb, из ma=ja-1, mb=jb-1 и из ma=ja, mb=jb -2). Два из них принадлежат к уже начавшим составляться груп­пам; третье говорит нам, что надо включить в рассмотрение и со­стояния с J=ja+jb-2. Такие рассуждения будут продол­жаться до тех пор, пока уже нельзя будет, меняя то одно, то дру­гое т, получать новые состояния.

Пусть из jаи jbменьшим является jb(а если они одинаковы, возьмите любое из них); тогда понадобятся только 2jb значений полного спина J, идущих единичными шагами от jа+jb вниз к jа-jb. Иначе говоря, когда объединяются два объекта со спинами jа и jb, то полный момент количества движения J их системы может равняться одному из значений:

(Написав | ja-jb|вместо ja-jb, мы можем избежать напо­минания о том, что jaіjb.)

Для каждого из этих значений J имеется 2J+1 состояний с различными значениями М; М меняется от +J до -J. Каждое из них образовано из линейных комбинаций исходных состояний | а, mа; b, mb> с соответствующими коэффициентами — коэффициентами Клебша — Гордона для каждого отдельного члена. Можно считать, что эти коэффициенты дают «количест­во» состояния | ja, ma; jb, mb>, проявляющегося в состоянии

Таблица 16.7 ·ОБЪЕДИНЕНИЕ ДВУХ ЧАСТИЦ СО СПИНОМ 1 (ja=1, jb=1)

I /, My. Так что каждый из коэффициентов Клебша — Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, mb), можно выразить равенство во второй строчке табл. 16.6 так:

Мы не будем здесь подсчитывать коэффициенты для других частных случаев. Но вы обнаружите такие таблицы во мно­гих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же про­сто привели в табл. 16.7 окончательный результат.

Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше вре­мени на другие примеры.

Добавление 1. Вывод матрицы поворота

Для тех, кто хотел бы разобраться в этом поподробнее, мы вычислим сейчас общую матрицу поворота для системы со спи­ном (полным моментом количества движения) j. В расчете об­щего случая на самом деле большой необходимости нет; важно понять идею, а все результаты вы сможете найти в таблицах, которые приводятся во многих книжках. Но, с другой стороны, вы зашли уже так далеко, что у вас, естественно, может возник­нуть желание убедиться, что вы и впрямь в состоянии понять даже столь сложные формулы квантовой механики, как (16.35).

Расширим рассуждения § 4 на систему со спином j, которую будем считать составленной из 2/ объектов со спином 1/2. Состоя­ние с m=j имело бы вид | + + + . . . +> (с j плюсами). Для m=j-1 было бы 2j членов типа | + + . . . + + ->, | + + . . . +- +>и т. д. Рассмотрим общий случай, когда имеет­ся r плюсов и s минусов, причем r+s=2j. При повороте вокруг оси r от каждого из r плюсов появится множитель e+ij/2. В итоге фаза изменится на i(r/2-s/2)j. Мы видим, что

m=(r-s)/2 . (16.59)

Как и в случае J=3/2, каждое состояние с определенным т должно быть суммой всех состояний с одними и теми же r и s, взятых со знаком плюс, т. е. состояний, отвечающих всевозмож­ным перестановкам с r плюсами и s минусами. Мы считаем, что вам известно, что всего таких сочетаний есть (r+s)!/r!s!. Чтобы нормировать каждое состояние, надо эту сумму разделить на корень квадратный из этого числа. Можно написать

где

Введем еще новые обозначения, они нам помогут в счете. Ну а поскольку мы уж определили состояния при помощи (16.60), то два числа r и s определяют состояние ничуть не хуже, чем j и m. Мы легче проследим за выкладками, если обозначим

где [см.. (16.61)]

r = j+m, s = j-т.

Далее, (16.60) мы запишем, пользуясь специальным обозна­чением

Обратите внимание, что показатель степени в общем множителе мы изменили на +1/2. Это оттого, что внутри фигурных скобок в (16.60) стоит как раз N=(r+s)!/r!s! слагаемых. Если сопоста­вить (16.63) с (16.60), то ясно, что

— это краткая запись выражения

где N — количество различных слагаемых в скобках. Эти обо­значения удобны тем, что каждый раз при повороте все знаки плюс вносят один и тот же множитель, так что в итоге он полу­чается в r-й степени. Точно так же все знаки минус дадут некоторый множитель в s-й степени, в каком бы порядке эти знаки ни стояли.

Теперь положим, что мы повернули нашу систему вокруг оси у на угол q. Нас интересует. Оператор Ry(q), дей­ствуя на каждый |+>, дает

где С=cosq/2 и S=sin q/2. Когда же Ry(q) действует на | ->, это приводит к

Так что искомое выражение равно

Теперь надо возвысить биномы в степень и перемножить. По­явятся члены со всеми степенями |+ у от нуля до r+s. Посмот­рим, какие члены дадут r'-ю степень |+ ). Они всегда будут сопровождаться множителем типа |->s', где s'=2j-r'. Соберем их вместе. Получится сумма членов типа |+>r' |->s' с численными коэффициентами Аr' , куда входят коэффициенты биномиального разложения вместе с множителями С и S. Урав­нение (16.65) тогда будет выглядеть так:

1 ... 35 36 37 38 39 40 41 42 43 ... 60
На этой странице вы можете бесплатно читать книгу 9. Квантовая механика II - Ричард Фейнман бесплатно.
Похожие на 9. Квантовая механика II - Ричард Фейнман книги

Оставить комментарий