Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.
Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент количества движения постоянен.
В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке х, у, z в момент t через y(x, у, z, t). Согласно квантовой механике, скорость изменения этой амплитуды со временем дается гамильтоновым оператором, действующим на ту же функцию. Из гл. 14 мы знаем, что
где
Здесь m—масса электрона, а V (r)— потенциальная энергия электрона в лектростатическом поле протона. Считая на больших удалениях от протона V=0, можно написать
V=-e2/r.
Волновая функция y должна тогда удовлетворять уравнению
Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид
Тогда функция y(r) должна быть решением уравнения
где Е — некоторое постоянное число (энергия атома).
Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.
Лапласиан в прямоугольных координатах определялся так:
Вместо этого мы хотим воспользоваться координатами r,q, j, изображенными на фиг. 17.1.
Фиг. 17.1. Сферические координаты r, q, j точки Р.
Они связаны с х, у, z формулами
х=rsinqcosj; у=rsinqsinj; z=rcosq.
Вас ждут довольно нудные алгебраические выкладки, но в конце концов вы должны будете прийти к тому, что для произвольной функции f(r) = f(r, q, j):
Итак, в полярных координатах уравнение, которому должна удовлетворять функция y(r, q, j), принимает вид
§ 2. Сферически симметричные решения
Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция y в общем случае будет зависеть как от q и j, так и от r, можно все же поискать, не бывает ли такого особого случая, когда y не зависит от углов. Если волновая функция от углов не зависит, то при поворотах системы координат ни одна из амплитуд никак не будет меняться. Это означает, что все компоненты момента количества движения равны нулю. Такая функция y должна соответствовать состоянию с равным нулю полным моментом количества движения. (На самом деле, конечно, равен нулю только орбитальный момент количества движения, потому что остается еще спин электрона, но мы на эту часть момента не обращаем внимания.) Состояние с нулевым орбитальным моментом количества движения имеет особое название. Его называют «s-состоянием» (можете считать, что s от слова «сферически симметричный»).
Раз y не собирается зависеть от q и j, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:
· Прежде чем заняться решением подобного уравнения, хорошо
; бы, изменив масштаб, убрать из него все лишние константы
вроде е2, m, h. От этого выкладки станут легче. Если сделать подстановки
то уравнение (17.8) обратится (после умножения на r) в
Эти изменения масштаба означают, что мы измеряем расстояние r и энергию Е в «естественных» атомных единицах. Например, r=r/rB, где rB=h2/me2, называется «боровским радиусом» и равно примерно 0,528 Е. Точно так же e=E/ER, где ER=me4/2h2. Эта энергия называется «ридбергом» и равна примерно 13,6 эв. Раз произведение ry встречается в обеих частях уравнения, то лучше работать с ним, чем с самим y. Обозначив
ry=f, (17.12)
мы получим уравнение, которое выглядит проще:
Теперь нам предстоит найти функцию f, которая удовлетворяет уравнению (17.13), иными словами, просто решить дифференциальное уравнение. К сожалению, не существует никаких общих, годных во всех случаях жизни методов решения любого дифференциального уравнения. Вы должны просто покрутить его то так, то этак. Хоть уравнение не из легких, но люди все же нашли, что его можно решить при помощи следующей процедуры. Первым делом вы заменяете f, которое является некоторой функцией от r, произведением двух функций:
Это просто означает, что вы выносите из f(r) множитель е-ar. Для любого f(r) это можно сделать. Задача теперь просто свелась к отысканию подходящей функции g(r).
Подставив (17.14) в (17.13), мы получим следующее уравнение для g:
Мы вправе выбрать любое a, поэтому сделаем так, чтобы было
a2=-e; (17.16)
тогда получим
Вы можете подумать, что мы не так уж далеко ушли от уравнения (17.13); но новое уравнение тем хорошо, что его можно легко решить разложением g(r) в ряд по r. В принципе есть возможность таким же способом решать и (17.13), но только все проходит сложнее. Мы говорим: уравнению (17.17) можно удовлетворить некоторой функцией g(r), которая записывается в виде ряда
где ak— постоянные коэффициенты. И нам осталось только найти подходящую бесконечную последовательность коэффициентов! Проверим, годится ли такая запись решения, Первая производная такой функции g(r) равна
а вторая
Подставляя это в (17:17), имеем
Пока еще не ясно, вышло ли у нас что-нибудь; но мы рвемся вперед. Если мы первую сумму заменим некоторым ее эквивалентом, то все выражение станет выглядеть лучше. Первый член в сумме равен нулю, поэтому каждое k можно заменить на k+1, от этого ничего в бесконечном ряде не изменится. Значит, первую сумму мы вправе записать и так:
Теперь можно объединить все три суммы в одну:
Этот степенной ряд должен обращаться в нуль при всех мыслимых значениях r, что возможно лишь тогда, когда коэффициенты при каждой степени r порознь равны нулю. Мы получим решение для атома водорода, если отыщем такую последовательность ak, для которой
при всех k>1. А это, конечно, устроить легко. Выберите какое угодно а1. Затем все прочие коэффициенты образуйте с помощью формулы