Модель авторегрессии порядка р обозначается как АР(р) или AR(p).
На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.
Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:
yt=δyt–1+νt.
Для модели АР(1) действует ограничение |δ|<1.
Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:
yt=δ1yt-1+δ2yt-2+νt.
На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:
1) (δ1+δ2)<1;
2) (δ1–δ2)<1;
3) |δ2|<1.
Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.
Общая модель скользящего среднего порядка q имеет вид:
yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,
где q – порядок модели скользящего среднего;
φt – неизвестные коэффициенты модели, подлежащие оцениванию;
νt – белый шум.
Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).
На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).
Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.
Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.
Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).
Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:
yt=δyt–1+νt–φνt–1,
где δ – параметр процесса авторегрессии;
φ – параметр процесса скользящего среднего;
νt – белый шум.
На коэффициенты данной модели накладываются следующие ограничения:
1) |δ|<1 – условие, обеспечивающее стационарность смешанной модели;
2) |φ|‹1 – условие, обеспечивающее обратимость смешанной модели.
Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.
83. Модель авторегрессии и проинтегрированного скользящего среднего
Модель авторегрессии и проинтегрированного скользящего среднего (АРПСС) была предложена американскими учёными Боксом и Дженкинсом в 1976 г. как один из методов оценки неизвестных параметров и прогнозирования временных рядов.
Моделью авторегрессиии проинтегрированного скользящего среднего называется модель, которая применяется при моделировании нестационарных временных рядов.
Нестационарный временной ряд характеризуется непостоянными математическим ожиданием, дисперсией, автоковариацией и автокорреляцией.
В основе модели авторегрессии и проинтегрированного скользящего среднего лежат два процесса:
1) процесс авторегрессии;
2) процесс скользящего среднего.
Процесс авторегрессии может быть представлен в виде:
xt=a+δ1xt-1+δ2xt-2+…+εt,
где a – свободный член модели, являющийся константой;
δ1 δ2…— параметры модели авторегрессии;
ε – случайное воздействие (ошибка модели).
Каждое наблюдение в модели авторегрессии представляет собой сумму случайной компоненты и линейной комбинации предыдущих наблюдений.
Процесс скользящего среднего может быть представлен в виде:
xt=μ+εt–θ1εt–1–θ2εt–2–…
где μ – свободный член модели, являющийся константой;
θ1 θ2… – параметры модели скользящего среднего;
ε – случайное воздействие (ошибка модели).
Текущее наблюдение в модели скользящего среднего представляет собой сумму случайной компоненты в данный момент времени и линейной комбинации случайных воздействий в предыдущие моменты времени.
Следовательно, в общем виде модель авторегрессии и проинтегрированного скользящего среднего описывается формулой:
где С – свободный член модели, являющийся константой;
εt – некомпенсированный моделью случайный остаток.
В обозначениях Бокса и Дженкинса модель авторегрессии и проинтегрированного скользящего среднего записывается как АРПСС(p,d,q) или ARIMA (p,d,q), где
p – параметры процесса авторегрессии;
d – порядок разностного оператора;
q – параметры процесса скользящего среднего.
Для рядов с периодической сезонной компонентой применяется модель авторегрессии и проинтегрированного скользящего среднего с сезонностью, которая в обозначениях Бокса и Дженкинса записывается как АРПСС (p,d,q) (ps,ds,qs), где
ps – сезонная авторегрессия;
ds – сезонный разностный оператор;
qs – сезонное скользящее среднее.
Моделирование нестационарных временных рядов с помощью модели авторегрессии и проинтегрированного скользящего среднего осуществляется в три этапа:
1) проверка временного ряда на стационарность;
2) идентификация порядка модели и оценивание неизвестных параметров;
3) прогноз.
Применение модели АРПСС предполагает обязательную стационарность исследуемого ряда, поэтому на первом этапе данное предположение проверяется с помощью автокорреляционной и частной автокорреляционной функций ряда остатков. Остатки представляют собой разности наблюдаемого временного ряда и значений, вычисленных с помощью модели.
Устранить нестационарность временного ряда можно с помощью метода разностных операторов.
Разностным оператором первого порядка называется замена исходного уровня временного ряда разностями первого порядка:
Разностные операторы первого порядка позволяет исключить линейные тренды.
Разностные операторы второго порядка позволяют исключить параболические тренды.
Сезонные разностные операторы предназначены для исключения 12-ти или 4-х периодичной сезонности:
Если модель содержит и трендовую, и сезонную компоненты, то необходимо применять оба оператора.
На втором этапе необходимо решить, сколько параметров авторегрессии и скользящего среднего должно войти в модель.
В процессе оценивания порядка модели авторегрессии и проинтегрированного скользящего среднего применяется квазиньютоновский алгоритм максимизации правдоподобия наблюдения значений ряда по значениям параметров. При этом минимизируется (условная) сумма квадратов остатков модели. Для оценки значимости параметров используется t-статистика Стьюдента. Если значения вычисляемой t-статистики не значимы, соответствующие параметры в большинстве случаев удаляются из модели без ущерба подгонки.
Полученные оценки параметров используются на последнем этапе для того, чтобы вычислить новые значения ряда и построить доверительный интервал для прогноза.
Оценкой точности прогноза, сделанного на основе модели авторегрессии и проинтегрированного скользящего среднего является среднеквадратическая ошибка (mean square), вычисляемая по формуле:
Чем меньше данный показатель, тем точнее прогноз.
Модель авторегрессии и проинтегрированного скользящего среднего считается адекватной исходным данным, если остатки модели являются некоррелированными нормально распределёнными случайными величинами.
84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
Основными показателями качества модели авторегрессии и проинтегрированного скользящего среднего являются критерий Акайка и байесовский критерий Шварца. Данные критерии аналогичны критерию максимума скорректированного множественного коэффициента детерминации R2или минимума дисперсии случайной ошибки модели G2.
Информационный критерий Акайка (Akaike information criterion – AIC) используется для выбора наилучшей модели для временного ряда yt из некоторого множества моделей.