Рейтинговые книги
Читем онлайн Механика от античности до наших дней - Ашот Григорьян

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 46 47 48 49 50 51 52 53 54 ... 103

Ответы на эти вопросы познакомят нас с тем, что действительно можно назвать механикой Лагранжа. Эта механика делится на две части: статику и динамику. Статика у Лагранжа основана на принципе виртуальных (возможных) скоростей. «Под виртуальной скоростью следует понимать скорость, которую тело, находящееся в равновесии, готово принять в тог момент, когда равновесие нарушено, т. е. ту скорость, какую тело фактически получило бы в первое мгновение своего движения». Принцип виртуальных скоростей формулируется так: «Если какая-либо система любого числа тел, или точек, на каждую из которых действуют любые силы, находится в равновесии и если этой системе сообщить любое малое движение, в результате которого каждая точка пройдет бесконечно малый путь, представляющий ее виртуальную скорость, то сумма сил, помноженных каждая соответственно на путь, проходимый по направлению силы точкой, в которой она приложена, будет всегда равна нулю, если малые пути, проходимые в направлении сил, считать положительными, а проходимые в противоположном направлении считать отрицательными»{174}.

Вводя этот принцип, Лагранж ссылался на данные опыта. Он указывал на общий закон равновесия машин: отношение сил друг к другу обратно отношению скоростей точек, к которым они приложены, причем скорости должны измеряться в направлении сил. Это положение, взятое в общем виде, и составляет принцип виртуальных скоростей, который «можно рассматривать как своего рода аксиому механики». Впрочем, Лагранж дал и два доказательства принципа виртуальных скоростей, но, разумеется, эти доказательства состоят в том, что этот принцип сводится к другим положениям статики. Наиболее известно доказательство, приведенное во втором издании «Аналитической механики». Оно основано на «принципе блоков». Считая последний принцип вполне наглядным, Лагранж рассматривал его как естественное основание для принципа виртуальных скоростей.

В динамике Лагранж исходит из двух законов: закона инерции и закона сложения движений (по правилу параллелограмма). Второй закон механики Ньютона Лагранж как бы выводит из этих двух следующим образом. В равномерно ускоренном движении существует постоянное отношение между скоростями и временами. Это отношение принимается за меру ускоряющей силы, непрерывно действующей на тело, — ведь эта сила может быть измерена только по такому ее действию. В общем же случае, «каковы бы ни были движение тела и закон его ускорения, но, согласно природе дифференциального исчисления, мы можем признать постоянным действие каждой ускоряющей силы в течение бесконечно малого времени, таким образом всегда можно определить величину силы, действующей на тело в любое мгновение, если вызванную в это мгновение скорость сравнить с продолжительностью этого мгновения…»{175} Эту схему перехода от равномерно ускоренного движения (Галилей) к общему случаю Лагранж связывает с именем Гюйгенса, построившего теорию центробежных сил. Ньютон, по Лагранжу, обобщил эту теорию Гюйгенса на все кривые линии и тем дополнил учение о неравномерных движениях и об ускоряющих силах, способных их вызвать. Сам Ньютон постоянно пользовался геометрическим методом, но «в настоящее время это учение сводится лишь к нескольким очень простым дифференциальным формулам».

Аналитическая динамика Лагранжа основана на общей формуле, которую сейчас называют уравнением Даламбера—Лагранжа или общим уравнением динамики. «Развитие» этой формулы, если при этом принять во внимание условия, зависящие от природы системы, дает все уравнения, необходимые для определения движения каждого тела, после этого остается только эти уравнения интегрировать, что является уже задачей анализа»{176}.

Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин: кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи: их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирование) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем «Трактате об электричестве и магнетизме», касаясь значения «Аналитической механики» Лагранжа:

«Так как благодаря созданию математической теории динамики развитие идей и методов чистой математики сделало возможным выявление многих истин, которые нельзя было бы открыть, не обучившись математике, то, если мы хотим создать динамическую теорию других наук, мы должны воспринять и эти динамические истины, и математические методы.

Формулируя идеи и термины любой науки, имеющей дело, как паука об электричестве, с силами и с их действиями, мы должны постоянно иметь в виду идеи, являющиеся достоянием основной пауки — динамики, чтобы мы могли с самого начала развития науки избежать противоречий с тем, что уже установлено, а также для того, чтобы с уточнением наших взглядов принятый нами язык нам помогал, а не мешал»{177}.

Принципом наименьшего действия Лагранж много занимался в первые годы своей научной деятельности в связи с работами по вариационному исчислению. При систематическом изложении механики этот принцип отходит у Лагранжа на второй план. Все же существенно было то, что Лагранж формулировал этот принцип с полной определенностью как чисто механическую теорему, справедливую при соблюдении определенных условий. Эта формулировка такова: при движении любой системы тел, находящихся под действием взаимных сил притяжения или сил, направленных к неподвижным центрам и пропорциональных каким-либо функциям расстояний, кривые, описываемые различными телами, а равно их скорости необходимо таковы, что сумма произведений отдельных масс на интеграл скорости, умноженной на элемент кривой, является максимумом или минимумом — при условии, что первые и последние точки каждой кривой рассматриваются как заданные.

Эта формулировка, как видим, приводит к уже знакомой нам записи: обращается в нуль вариация суммы величин вида

m∫vds,

где m — масса одной из точек системы, v — ее скорость, ds — элемент пути, или, иначе говоря, бесконечно малый отрезок траектории точки т. К этому Лагранж добавляет, что ds = vdt (dt обозначает тот бесконечно малый промежуток времени, в течение которого точка т проходит путь ds), поэтому вместо m∫vds можно написать m∫v2dt или ∫mv2dt. Тут под знаком интеграла мы видим (удвоенную) живую силу точки, а так как нам надо взять сумму таких величин для всей рассматриваемой механической системы, то в итоге под знаком интеграла окажется (удвоенная) живая сила всей системы в любое мгновение. Таким образом, говорит Лагранж, рассматриваемый принцип сводится собственно к тому, что сумма живых сил всех тел от момента, когда они выходят из заданных точек, до того момента, когда они приходят в другие заданные точки, является максимумом или минимумом. Следовательно, этот принцип можно было бы с большим основанием назвать принципом наибольшей или наименьшей живой силы.

По мнению Лагранжа, такая формулировка имела бы то преимущество, что она была бы общей как для движения, так и для равновесия, поскольку в статике Лагранж доказывал, что при прохождении положения равновесия живая сила системы бывает наибольшей или наименьшей.

Лагранжу принадлежат также многочисленные работы по механике сплошной среды. В «Аналитической механике» немало места уделено гидростатике, гидродинамике, теории упругости. В этих разделах Лагранж систематизировал все результаты, полученные им и его предшественниками. В теории упругости Лагранж не располагал общими уравнениями (они были выведены позже, в 20-е годы XIX в.) и рассматривал равновесие и колебания около положения равновесия упругих тел одномерных или двумерных — типа нити, струны, мембраны. В гидродинамике Лагранж оперировал уравнениями для идеальной жидкости (т. е. совершенно лишенной внутреннего трения), выведенными для него Эйлером.

Математические трудности тут оказались настолько большими, что в общем случае Лагранж мог предложить только приближенный способ решения уравнения движения. Понадобилось немало времени, чтобы с помощью новых математических методов добиться дальнейших результатов там, где вынужден был остановиться такой гениальный ученый, как Лагранж.

1 ... 46 47 48 49 50 51 52 53 54 ... 103
На этой странице вы можете бесплатно читать книгу Механика от античности до наших дней - Ашот Григорьян бесплатно.

Оставить комментарий