Кроме затронутых выше методов решения задач оптимизации, напомним о том, что гладкие функции оптимизируют, приравнивая 0 производную (для функций нескольких переменных – частные производные). При наличии ограничений используют множители Лагранжа. Эти методы обычно излагаются в курсах высшей математики и потому опущены здесь.
Представляют интерес задачи оптимизации с нечеткими переменными, а также задачи оптимизации, возникающие в эконометрике. Например, метод наименьших квадратов, разобранный в следующей главе, основан на решении задачи оптимизации. Итоговое мнение комиссии экспертов часто вычисляют как решение задачи оптимизации (глава 3.4). Конкретные виды задач оптимизации и методы их решения рассматриваются в соответствующей литературе.
3.3. ОСНОВЫ ЭКОНОМЕТРИЧЕСКИХ МЕТОДОВ
3.3.1. Что такое эконометрика?
Согласно Большому Энциклопедическому словарю (М.: Изд—во «Большая Российская Энциклопедия», 1997), эконометрика – наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Эконометрические методы – это прежде всего методы статистического анализа конкретных экономических данных, естественно, с помощью компьютеров. Такие методы успешно используются в зарубежных и отечественных экономических и технико—экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других эконометрических методов дает заметный экономический эффект. Например, в США – не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества.
К наиболее практичным и эффективным интеллектуальным инструментам менеджера относятся эконометрические методы. В учебниках по экономической теории, как правило, выделяют в качестве ее основных областей макроэкономику, микроэкономику и эконометрику [Шевчук Д.А., Шевчук В.А. Макроэкономика: Конспект лекций. – М.: Высшее образование, 2006]. Кратко обсудим основные проблемы этой области экономической теории, а затем рассмотрим один из наиболее часто используемых эконометрических методов – метод наименьших квадратов.
В мировой науке эконометрика занимает достойное место. В настоящее время в России развертываются теоретические и практические эконометрические исследования, положено начало распространению обучения этой дисциплине. Только в секции «Математические методы исследования» журнала «Заводская лаборатория» за последние 40 лет напечатано более 1000 статей по высоким статистическим технологиям и их применениям.
Высокие статистические технологии в эконометрике. Особый интерес представляют эконометрические применения высоких статистических технологий.
Может возникнуть естественный вопрос: зачем нужны высокие статистические технологии, разве недостаточно обычных статистических методов? Исследователи в области эконометрики считают (и доказывают своими теоретическими и прикладными работами), что совершенно недостаточно. Так, многие данные в реальной социально—экономической деятельности, а потому и в информационных системах поддержки принятия решений в менеджменте имеют нечисловой характер, например, являются словами или принимают значения из конечных множеств (выбор происходит из конечного числа градаций). Нечисловой характер имеют и упорядочения, которые дают эксперты или менеджеры, например, выбирая главную цель предприятия, следующую по важности и т. д., сравнивая образцы продукции с целью выбора наиболее подходящего для запуска в серию и др. Значит, для контроллинга нужна статистика нечисловых данных. Далее, многие величины известны не абсолютно точно, а с некоторой погрешностью – лежат в пределах от одной границы до другой. Другими словами, исходные данные – не числа, а интервалы. Это – следствие общеинженерного утверждения: любое измерение проводится с погрешностями. Следовательно, для эффективного управления нужна статистика интервальных данных. Мнения людей естественно описывать в терминах теории нечеткости. Значит, менеджеру нужна статистика нечетких данных. Ни статистики нечисловых данных, ни статистики интервальных данных, ни статистики нечетких данных нет и не могло быть в классической статистике. Все это – высокие статистические технологии, разработанные за последние 10–30 лет.
Важная часть эконометрики – применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по «доводке» статистических технологий применительно к конкретной ситуации. Большое значение для менеджмента имеют конкретные эконометрические модели, например, вероятностно—статистические модели тех или иных процедур экспертных оценок или экономики качества, имитационные модели деятельности организации. И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово—хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистый приведенный доход, внутренняя норма доходности, основанные на учете изменения стоимости денежной единицы во времени (учет осуществляется с помощью дисконтирования). А при анализе финансово—хозяйственной деятельности организации на основе данных бухгалтерской отчетности про необходимость дисконтирования «забывают».
В середине 1980–х годов в советской средней школе ввели новый предмет «Информатика». И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки, и этим заметно отличается от тех, кому за 40–50 лет. Если бы удалось ввести в средней школе курс вероятности и статистики – а такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах мира (см. подготовленный ЮНЕСКО сборник докладов) – то ситуация с применением эконометрики в нашей стране могла бы быть резко улучшена.
Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них – это результаты измерений различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой – это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это – субъективная информация. Стабильная экономическая ситуация позволяет рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях. В подобных условиях данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки. Такая новейшая часть эконометрики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок.
Для решения каких управленческих и экономических задач может быть полезна эконометрика? Практически для всех, использующих конкретную информацию о реальном мире. Только чисто абстрактные, отвлеченные от реальности исследования могут обойтись без нее. В частности, эконометрика необходима для прогнозирования, в том числе поведения потребителей, а потому и для планирования. Выборочные исследования, в том числе выборочный контроль, основаны на эконометрике. Но планирование и контроль – основа контроллинга. Поэтому эконометрика – важная составляющая инструментария контроллера, воплощенного в компьютерной системе поддержки принятия решений. Прежде всего оптимальных решений, которые предполагают опору на адекватные эконометрические модели. В производственном менеджменте это может означать, например, использование оптимизационных эконометрических моделей типа тех, что применяются при экстремальном планировании эксперимента (они позволяют повысить выход полезного продукта на 30–300 %).
Высокие статистические технологии в эконометрике предполагают адаптацию применяемых методов к меняющейся ситуации. Например, параметры прогностического индекса меняются вслед за изменением характеристик используемых для прогнозирования величин. Таков метод экспоненциального сглаживания. В соответствующем алгоритме расчетов значения временного ряда используются с весами. Веса уменьшаются по мере удаления в прошлое. Многие методы дискриминантного анализа основаны на применении обучающих выборок. Например, для построения рейтинга надежности банков можно с помощью экспертов составить две обучающие выборки – надежных и ненадежных банков. А затем с их помощью решать для вновь рассматриваемого банка, каков он – надежный или ненадежный, а также оценивать его надежность численно, т. е. вычислять значение рейтинга.