Рейтинговые книги
Читем онлайн Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 58 59 60 61 62 63 64 65 66 ... 125

Вторым основным путем к сложной организации является экзаптация, простая, но мощная концепция, предложенная Стивеном Гулдом и Ричардом Левонтином (см. гл. 2): молекулы или комплексы, которые эволюционировали под действием отбора на определенную функцию, нередко приспосабливаются (экзаптируются) для других, хоть и часто механистически сходных, функций (Gould, 1997a). Мы столкнулись с многими бесспорными случаями экзаптации при обсуждении фундаментальных инноваций, возникших в ходе эукариогенеза (см. гл. 7), например комплекса ядерных пор. Экзаптация часто дополняется случайной рекомбинацией уже существующих молекул или устройств, особенно в тех промежутках процесса эволюции, когда рекомбинация стимулируется, как это почти наверняка было при эукариогенезе, потоком генетического материала от симбионта к хозяину. В редких случаях случайные комбинации уже существующих устройств дают новые функции, которые могут решить актуальные проблемы и потому фиксируются отбором.

Третья ключевая идея, которая, возможно, дополняет неадаптивную популяционно-генетическую теорию эволюции генома и может указывать наиболее общий путь к организационной сложности, – это модель конструктивной нейтральной эволюции (КНЭ), предложенная Арлином Стольцфусом в 1999 году (Stoltzfus, 1999)[82]. Суть КНЭ заключена в появлении зависимости между случайно взаимодействующими молекулами, которая делает взаимодействие необходимым и, следовательно, приводит к эволюции организационной сложности. КНЭ является храповиком, как и многие другие эволюционные явления, рассматриваемые в этой книге: появившаяся однажды зависимость становится фактически необратимой. Прекрасным примером КНЭ представляется эволюция сплайсосомы у эукариот (см. гл. 7). По модели КНЭ, случайное расщепление некоторых интронов группы II, вторгшихся в геном хозяина на ранней стадии эукариогенеза, привело к возникновению предков snРНК (активный компонент сплайсосомы) и позволило деградировать самосплайсирующимся концевым структурам всех интронов. В одновременном или последующем процессе случайные взаимодействия РНК-связывающих белков, в частности архейного белка Sm, с интронной РНК позволили деградировать интрон-кодируемой обратной транскриптазе. Очевидно, что эти изменения, создающие зависимости между компонентами эволюционирующей сплайсосомы, по сути необратимы, что формирует храповик и фиксирует эволюционирующую сложную организацию. Цитируя недавнее обобщение этого понятия Майклом Греем и коллегами (Gray et al., 2010), можно сказать, что сложность, появляющаяся по КНЭ, видимо, является не столько нередуцируемой, сколько «непоправимой». Прямой параллелью к модели КНЭ является сценарий субфункционализации для эволюции дупликации генов, предложенный Линчем с коллегами (Lynch and Katju, 2004). Согласно этому сценарию, дупликации генов могут быть зафиксированы без прямой адаптации, поскольку после дупликации новые паралоги могут свободно накапливать дифференциальные мутации, которые инактивируют, в каждом из паралогов, некоторые из многих функций, выполняемых предковым геном. Как только это произойдет, оба паралога становятся незаменимыми – еще один храповой механизм конструктивной нейтральной эволюции. Наблюдения, показывающие практически симметричное ослабление очищающего отбора для паралогов сразу же после дупликации, совместимы с моделью субфункционализации (Kondrashov et al., 2002).

Краткий обзор и перспектива: неадаптивная эволюционная парадигма и переоценка концепции эволюционного успеха

Возникновение и эволюция сложности на уровне генотипа и фенотипа и отношение между ними составляют одну из главных проблем биологии, если не сказать главнейшую. Даже если оставить в стороне на время проблему фактического происхождения весьма существенной сложности, связанной с клеточным уровнем организации (см. гл. 11), нельзя не удивиться, почему эволюция жизни не остановилась на стадии простейших автотрофных прокариот, имеющих 1000–1500 генов. Почему же вместо этого эволюция продолжилась, произведя на свет сложных прокариот, обладающих более чем десятком тысяч генов, и, что еще более поразительно, эукариот, с их огромными, тщательно регулируемыми геномами, многими типами тканей и даже их способностью к созданию математических теорий эволюции?

Традиционный взгляд на эти проблемы явно или неявно сосредоточивается на сложности как на блистательном проявлении адаптации и силы естественного отбора. Соответственно, более сложные организмы традиционно считаются более развитыми, более успешными и, в некотором смысле, более важными, чем простые существа. Однако Стивен Джей Гулд предложил совершенно иную, стохастическую точку зрения на эволюцию сложности, случайное блуждание, метафорически описываемое им как походка пьяницы, вышедшего из бара на улицу[83]: даже если человек под воздействием большого количества алкоголя передвигается совершенно случайно, через какое-то время он в конечном счете окажется довольно далеко от двери бара, например в канаве с другой стороны дороги (Gould, 1997b). То же относится к эволюции сложности: по прошествии достаточного количества времени эволюция, запущенная «со столь простого начала», ожидаемо достигнет высокой сложности в результате чисто стохастических процессов[84]. Эта точка зрения на сложность вполне разумна, но является слишком абстрактной для удовлетворительной теории.

Как только стало возможным сравнение геномов простых (прокариот) и сложных (животных и растений) форм жизни, исследователи поняли, что в этих геномах есть что-то странное, вряд ли совместимое с идеей постоянного увеличения геномной сложности параллельно с ростом сложности организмов. Действительно, хотя геномы многоклеточных эукариот могут быть более сложными, чем у прокариот и даже одноклеточных эукариот, но в то же время эти сложные геномы чудовищно неупорядоченны и заполнены мобильными элементами и прочим мусором; они представляют собой состояния высокой энтропии, как подчеркивается оценками в этой главе. Концептуальный взгляд на этот парадокс сравнительной геномики привел к неадаптивной теории эволюции генома, разработанной в основном на основе стандартных формул популяционной генетики. Тем не менее, несмотря на этот простой аппарат, теория поставила существующие представления о природе эволюции генома с ног на голову. В соответствии с неадаптивной теорией эволюция сложности генома является не адаптацией как таковой, а скорее следствием первоначального увеличения энтропии, вызванного слабостью очищающего отбора и, напротив, увеличенной силой дрейфа, характерной для популяционных «бутылочных горлышек».

Как это ни парадоксально, увеличение энтропии генома, являющееся необходимым условием для последующего усложнения, может закономерно рассматриваться как «геномный синдром», как неспособность организмов с небольшим эффективным размером популяции справиться с распространением эгоистичных элементов и других процессов, ведущих к росту энтропии. Конечно, эволюция сложности сама представляет собой сложный процесс, и эволюция кооптированных последовательностей включает в себя множество очевидных адаптаций. Однако первоначальный энтропийный толчок является дезадаптацией, которую популяция изначально не в силах преодолеть. Частично последующая функциональная адаптация изначально нейтральных последовательностей компенсирует бремя возросшей геномной энтропии – другими словами, она позволяет организмам пережить рост своих геномов.

Реконструкции истории геномов и клеток, рассматриваемые в рамках неадаптивной парадигмы эволюции генома, привели к весьма удивительным выводам. Оказалось, что большая – вероятно, практически вся – история жизни шла отнюдь не в ключе «прогрессивной» эволюции в сторону увеличения сложности[85]. Вместо этого многие эволюционирующие линии пошли по пути оптимизации генома, при которой геномная энтропия и общая биологическая сложность генома падали, зачастую значительно, в то время как биологическая плотность информации росла. Некоторые другие линии, такие как наша собственная, пошли по пути задействования мусорных элементов (для регуляторных и структурных ролей, как в случае с РНКомом животных), что привело к резкому увеличению общей сложности, но лишь незначительному уменьшению энтропии. Таким образом, в этих линиях рост плотности биологической информации был весьма скромным, по сравнению с высокоэнтропийными состояниями, связанными с «бутылочными горлышками» в переходные эпохи.

Модели конструктивно нейтральной эволюции и субфункционализации паралогов дополняют неадаптивную теорию геномной эволюции, представляя убедительные сценарии неадаптивной эволюции сложности на уровне молекулярных фенотипов. В более широкой перспективе эти теоретические разработки, совместимые с эмпирическими данными сравнительной геномики, завершают пересмотр эволюционной биологии, начатый нейтральной теорией молекулярной эволюции. Последняя показала, что большинство мутаций, фиксирующихся в процессе эволюции, эффективно нейтральны и поддерживают, таким образом, нейтральность как подходящую нулевую гипотезу для всех молекулярных эволюционных исследований. Новые разработки сделали то же для эволюции генома и молекулярного фенома. Очевидно, что от нулевой гипотезы не ожидается полного описания любого процесса, не говоря уже о таком сложном, многогранном процессе, как эволюция жизни. Как мы видели, во многих случаях некоторые из предсказаний неадаптивной теории не исполняются из-за дополнительных сильных ограничений, вытекающих из особенностей образа жизни организмов. И конечно, положительный отбор и вызываемые им адаптации являются важнейшими аспектами эволюции. Однако похоже, что эти факторы проявляются локально на глобальном фоне более фундаментальных процессов, таких как давление очищающего отбора, определяемого эффективным размером популяции и эволюционными храповиками, что может приводить к неадаптивному появлению сложности.

1 ... 58 59 60 61 62 63 64 65 66 ... 125
На этой странице вы можете бесплатно читать книгу Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин бесплатно.

Оставить комментарий