Предполагается, что группам лиц, с одной стороны, пригодных (группа «А»), а с другой стороны, непригодных (группа «В») к рассматриваемой деятельности соответствуют два класса n-мерных векторов {vA} и {vB}, которые могут сильно пересекаться, но статистически различны. В дальнейшем всегда будем считать, что {vA} – класс векторов, характеризующих пригодных к данной деятельности субъектов.
С математической точки зрения задача определения профессиональной пригодности заключается в отнесении с определенной вероятностью ошибки вектора (v1, v2, …, vn) к одному из двух классов – «А» или «В».
Имеется много различных методов решения этой задачи. Во всех методах необходим этап «обучения»: статистический анализ уже имеющегося опыта. Для целей определения профессиональной пригодности они не получили большого распространения – одни из-за крайней громоздкости и сложности применения даже при помощи вычислительных машин, другие потому, что оказались не очень эффективными.
Успех классификации по многим признакам в задачах диагностики зависит от информативности этих признаков и способа интеграции информации. Этот способ интеграции должен быть:
1) простым в вычислительном отношении и доступным при использовании;
2) малочувствительным к отсутствию какого-либо признака;
3) в какой-то мере инвариантным к сдвигу распределений признаков (последнее существенно в силу необходимости считаться с разными методическими условиями получения одного и того же признака).
Этим требованиям в значительной степени удовлетворяет алгоритм, основанный на модификации последовательного статистического анализа отношения вероятностей [58]. Он был предложен для диагностических целей и оказался весьма эффективным при дифференциальной диагностике ряда заболеваний по таким признакам, на основании которых постановка диагноза оказывалась затрудненной даже для опытных специалистов [63].
Для целей определения профессиональной пригодности этот алгоритм должен быть еще более эффективным, так как психологические признаки v1, v2, …, vn являются слабо статистически зависимыми, а при этих условиях последовательный анализ отношения вероятностей является оптимальной процедурой для классификации на два класса [64].
10.5.2. Алгоритм
Алгоритм состоит из двух этапов: первого – этапа обучения, во время которого накапливается информация о признаках на основании уже имеющегося опыта и оценивается информативность выбранных признаков, и второго – этапа классификации, на котором выносится решение о пригодности субъекта к определенной деятельности.
Обучение. Предполагается, что на основании предыдущего опыта можно выделить группы субъектов «А» и «В», которые отражают наше понимание пригодности (или непригодности) к данной деятельности и являются определенными эталонами для дальнейшего прогнозирования пригодности. Ряд практических вопросов, связанных с образованием классов «А» и «В», будет рассмотрен ниже. Далее предполагается, что имеется какой-то набор признаков v1, v2,…, vn, существенность которых для определения профессиональной пригодности можно и не знать. Теперь можно построить множество векторов {vA} и {vB}, соответственно характеризующих группы субъектов «А» и «В».
Процесс обучения состоит в получении оценки дискретных одномерных распределений вероятностей признаков v1, v2,…, vn для класса «А»: fA1(v1), fA2(v1),…, fAn(v1) для класса «В»: fB1(v1), fB2(v1),…, fBn(v1).
Предполагается, что v1, v2,…, vn слабо зависимы. Если, однако, этого нет, то для увеличения эффективности процедуры в рассмотрение вводятся сложные признаки – синдромы, определение которых можно получить на основании опыта и теоретических соображений или же используя соответствующий математический аппарат. Построение одномерных распределений существенно облегчает процесс обучения, а в случае слабой зависимости потери информации при этом невелики.
Если классы «А» и «В» многочисленны, то можно получить достаточно хорошую оценку требуемых вероятностей {fА(vj)} и {fB(vj)} (i = 1, 2, …, n).
В тех же случаях, когда численности классов «А» и «В» невелики, приходится прибегать к грубому квантованию признаков на 2–3–4 градации. Практическая проверка показывает, что при наличии в группе 25–30 человек и соответствующем квантовании можно получить удовлетворительные результаты.
Полученные в результате обследования данного контингента лиц показатели могут иметь различную ценность для целей прогнозирования профессиональной пригодности. Поэтому следующим этапом «обучения» является оценка информативности признаков.
Признак будет тем более информативным, чем больше различие между его распределениями у представителей класса «А» и «В». Оценка информативности признака v1 может выражаться величиной Pj – вероятностью того, что распределения fАj(vj) и fBj(vj) различны. Это достигается при помощи вычисления χ2. Интуитивно ясно, что вероятность Pj может быть хорошей мерой информативности признака vj при данной конкретной классификации. Необходимо отметить, что признаки, информативные в одном случае, могут оказаться совсем не информативными для решения задачи профотбора других специалистов.
Вычисление c2 производилось по формуле:
где NA(j) и NB(j)– общее число лиц соответственно в классах «А» и «В», данные которых использовались при построении распределений для j-го признака;Ai(j) и Bi(j) – частоты появления индивидов в i-й градации j-го признака для сравниваемых классов; Sj – число градаций для j-го признака.
Вероятности Pj определялись по таблицам Л. Большова и Н. Смирнова [52]. Оценка информативности может быть также получена и при помощи расстояния Кульбака. В принятых здесь обозначениях и несколько измененной форме это расстояние имеет вид:
где
Эта мера имеет ряд преимуществ, особенно при теоретических исследований. Для практики представляет интерес возможность измерения значимости признаков v1(j = 1, 2, …, n) отдельно для вынесения решения о принадлежности v к {vA} или {vB} (соответственно слагаемые IAj и IBj ).
Используя ту или другую меру, признаки целесообразно расположить по их убывающей информативности, а те из них, которые неинформативны (P слишком велико или I – мало), использовать не надо. Если окажется, что информативных признаков осталось мало, то необходимо ввести новые признаки.
Процесс «обучения» можно считать законченным, когда оценки распределений fАj(vj) и fBj(vj) (j = 1, 2, …, n) достаточно надежны, признаки упорядочены по их информативности и их достаточно много.
Классификация (решающее правило). При классификации можно допустить две ошибки. Субъект из класса «А» может быть ошибочно отнесен к классу «В» и, наоборот, субъект из класса «В» может быть ошибочно причислен к классу «А». Первую из указанных ошибок классификации будем обозначать через α, а вторую через β.
Вероятности ошибок α и β определяются до проведения классификации. При выборе этих вероятностей должна быть учтена важность той или другой ошибки классификации, а также реальная ситуация, возникшая при решении данной конкретной задачи.
Пусть при обследовании субъекта S были получены признаки v10, v20,…, Vn0 (они приведены здесь в порядке их убывающей информативности). Пусть на основании здравого смысла выбраны допустимые вероятности ошибок α и β. Рассмотрим отношение вероятностей, соответствующих первому признаку: