«О парении птиц» — так назывался прочитанный им в январе 1891 года доклад на заседании Московского математического общества. На примере пернатых «небожителей» в этом труде были рассмотрены, теоретические основы полета и, в частности, дано описание «мертвой петли», которую спустя двадцать два года первым в мире выполнил русский летчик Петр Николаевич Нестеров. Но для Жуковского это пока был лишь один из первых шагов к действительному пониманию законов полета.
Как возникает сила, удерживающая бумажный змей в воздухе? Если верить Ньютону, то подъёмная сила возникает как результат ударов частичек воздуха о поставленную под углом к потоку преграду. Но почему тогда удерживается в воздухе выгнутая вверх пластинка, хотя частицы должны бы были заставить ее упасть? И снова поиски, наблюдения, опыты. Только пятнадцать лет спустя появляется знаменитый труд Жуковского «О присоединенных вихрях», открывший миру причины, рождающие на крыле подъемную силу. Ту самую силу, что несет сегодня над землей все наши самолеты, планеры, вертолеты и винтокрылы.
Сейчас пожелтевшие от времени страницы этого труда бережно хранятся в небольшом особняке на улице Радио в Москве. Это мемориальный музей, носящий имя «отца русской авиации». Когда-то в этом здании заседал первый научный совет ЦАГИ — Центрального аэрогидродинамического института, созданного по указанию В. И. Ленина в 1918 году. А в соседней комнате Андрей Николаевич Туполев строил свой первый самолет «АНТ-1». Любопытно, что когда строительство подошло к концу и самолет предстояло извлечь из мастерской, пришлось разрушить одну из стен: уже тогда «масштабы» молодого советского самолетостроения явно перерастали свою «колыбель».
Открытия не только рождают победы, с ними возникают и новые преграды. Так на лабораторном столе появился существующий и поныне грозный враг всего летящего — турбулентность. В те дни, когда о существе полета знали еще так мало, из это открытие, возможно, никто и не обратил бы внимания, если бы с ним не был связан своего рода научный курьез.
В 1907 году тогда еще молодой профессор Геттингенского университета, а впоследствии знаменитый немецкий ученый Людвиг Прандтль ставит ряд опытов по аэродинамике. И одновременно с ним во Франции аналогичными исследованиями занимается Александр Эйфель, успевший к тому времени обессмертить свое имя знаменитой трехсотметровой стальной башней в Париже. Оба экспериментатора изучают обтекание шара воздушным потоком и после завершения опытов, естественно, сравнивают результаты. И здесь, к их общему ужасу, выясняется непредвиденное — полученные результаты резко отличаются друг от друга: у одного коэффициент лобового сопротивления шара получился в три раза больше, чем у другого.
Любители научных скандалов уже предвкушали наслаждение от длительного спора между учеными, но, к их глубокому сожалению, перепалка не состоялась. Оказалось, что причина этого казуса уже давно известна. Ее открыл известный английский физик Осборн Рейнольдс.
В 1883 году Рейнольдс наблюдает течение жидкостей в трубах и выясняет, что оно может быть двух видов: слоистое, плавное, которое ученый назвал ламинарным (в буквальном переводе это означает «в полоску»), и бурное, вихревое, получившее название турбулентного. Тогда же он устанавливает и тот факт, что при определенных скоростях ламинарное течение может превращаться в турбулентное, при этом резко возрастает сопротивление трения: чтобы протолкнуть жидкость по трубе, приходится затрачивать большие усилия. Этими-то «капризами» потока и объяснялась разница в опытах Прандтля и Эйфеля. Там, где коэффициент лобового сопротивления получился больше, шар обтекался турбулентным потоком.
«Чрезвычайное происшествие» с шаром показало, что турбулентность присуща не только течению жидкостей, но и воздушному потоку. А раз так, значит полету самолета, ракеты, вертолета и даже планера. На примере парителя и познакомился с «сюрпризами» турбулентности наш известный авиаконструктор и большой поклонник планерного спорта Олег Константинович Антонов.
Летом двадцать седьмого года Антонов вместе с группой товарищей закончил постройку легкого планера собственной конструкции. В соответствии с традициями тех лет планер был назван инициалами автора — «ОКА-II» — и вытащен на «Жареный бугор» под Саратовом для испытаний. Конструктор, летные доспехи которого в ту пору состояли из трусов и тапочек, занял место пилота, шестеро крепких ребят дружно взялись за веревки, заменяющие буксировочный трос, и со всей прытью молодых ног кинулись вниз по склону бугра.
По всем расчетам конструктора, планер должен был полететь. Конечно, он мог летать и плохо и хорошо — опыта пока было маловато. Но планер упорно не хотел покидать надежную землю. Все усилия молодых авиаторов кончались тем, что паритель отрывался от земли и тут же грузно плюхался обратно. Неудачей закончились и все последующие попытки загнать «бессовестную птицу» в небо. Ни сильный ветер, ни различные ухищрения пилота, ни самоотверженные усилия «стартовой команды» — ничто не могло заставить планер взлететь. Каникулы подходили к концу, пора было отправляться в институт, и Олег Константинович покинул Саратов, так и не испытав собственного планера. Но его товарищи не сдались. Весной следующего года они снова вытащили «ОКА-II» на тот же бугор, предварительно покрыв тонкую полотняную обшивку планера раствором крахмала. Подобную операцию пробовали проделать и в прошлом году, но бросили: по выражению самого конструктора, полотно провисало между деталями каркаса, «как на ребрах худой лошади».
Снова веревки в руки и опять, памятуя о прошлогодней неудаче, со всех ног вниз по склону. И тут свершилось невероятное: с первых же метров разбега планер легко взмыл в воздух и поплыл, слегка покачивая крыльями, в долину. Планер полетел, а конструктору оставалось только ломать голову над странной загадкой: почему не летал раньше и почему полетел теперь?
В аэродинамике есть такое понятие — «пограничный слой». Так называют тонкий слой воздуха, текущий в непосредственной близости от поверхности обтекаемого предмета — фюзеляжа, оперения и, конечно, крыла. И от того, как ведут себя частицы воздуха в этом слое, зависит очень многое. В частности, поведение частиц в пограничном слое крыла оказывает существенное влияние и на создаваемую им подъемную силу и на неизменно сопутствующую полету силу сопротивления.
Попав на крыло, частицы сначала ведут себя вполне благопристойно — неподалеку от носка профиля крыла поток сохраняет столь приятный авиаторам «полосатый» вид. Но по мере того как частицы удаляются от носка, их поведение начинает меняться. Трущийся о крыло слой воздуха постепенно теряет скорость, а вместе с ним теряют скорость и частицы. Наконец, наступает момент, когда они, словно снаряд на излете, перестают выдерживать прежнее направление полета и начинают двигаться хаотически — ламинарный поток превращается в турбулентный. В этом месте пограничный слой сразу становится толще, как говорят аэродинамики, «набухает». А сопротивление крыла резко увеличивается, словно за счет выросшего пограничного слоя крыло стало толще.