На протяжении 100 с лишним лет ученые считали, что большое разнообразие строения глаз является результатом независимых «изобретений», произошедших в разных группах. На основании клеточного строения глаз животных знаменитый биолог-эволюционист Эрнст Майр и его коллега Л. В. Сальвини-Плевен предположили, что глаза в ходе эволюции возникали независимым образом от 40 до 65 раз.
С одной стороны, это утверждение поддерживает теорию о воспроизведении эволюционных событий при возникновении одних и тех же потребностей (в данном случае речь идет о потребности видеть). Идея о повторении эволюции глаз была широко распространена. Однако новые открытия заставили ученых пересмотреть свой взгляд на эволюцию глаза. Основной вопрос заключается в следующем: возникли ли глаза «из ничего» или их эволюция строилась на готовых элементах, имевшихся у одного или нескольких общих предшественников. Именно от этого зависят наши представления о вероятности эволюции сложных структур. Конечно, кажется более «трудным делом» (менее частым или менее вероятным) создание какой-либо структуры на пустом месте, из ничего, по сравнению с ситуацией, когда части этой структуры уже существуют. Новые данные показывают, что совершенно разные глаза, имеющиеся у разных типов животных, имеют между собой гораздо больше общего, чем кажется на первый взгляд, и эта общность позволяет нам лучше понять процесс эволюции сложных структур.
История формирования нового взгляда на эволюцию глаза началась в 1994 г. Вальтер Геринг и его коллеги из Университета Базеля (Швейцария) занимались изучением гена, необходимого для развития сложного глаза у дрозофилы. Когда этот ген инактивировали с помощью мутаций, глаз не формировался. Еще раньше ученые, занимающиеся генетикой дрозофил, прозвали этот ген безглазым (eyeless) (многие гены получают свое название от той функции, которая нарушается в случае их мутации; на самом деле нормальная функция данного гена состоит в содействии формированию глаза). Когда ученые выделили ген eyeless, они, к своему большому удивлению, обнаружили, что он кодирует белок, который чрезвычайно сильно напоминает белки, кодируемые мышиным и человеческим генами. Мышиный белок назвали маленьким глазом (Small eye); он также необходим для формирования глаза. Человеческий белок получил имя аниридия (Aniridia), поскольку его дефект приводит к исчезновению радужной оболочки глаза. Сходство между белками человека, мыши и дрозофилы настолько велико, что становится ясно — это один и тот же белок у разных видов организмов (рис. 8.2).
Рис. 8.2. Фрагмент белковой последовательности, кодируемой геном Pax-6. Здесь представлены фрагменты белка дрозофилы, мыши и человека. Обратите внимание на большое сходство между белками дрозофилы и млекопитающих, а также на идентичность последовательностей белка мыши и человека.
Теперь этот белок носит общее и менее выразительное имя — Pax-6.
Открытие гена Pax-6 тут же вызвало новый вопрос: является ли наличие одинаковых генов у животных со столь разными глазами, как у насекомых и млекопитающих, простым совпадением или имеет какой-то глубокий смысл? Другими словами, использовали ли дрозофилы и млекопитающие ген Pax-6 для независимой эволюции своих глаз «из ничего» или кажущиеся столь разными глаза имеют между собой больше общего, чем представляется на первый взгляд, и их формирование при участии гена Pax-6 является отражением какого-то фундаментального принципа?
Теперь появилось множество новых данных, позволяющих ответить на этот вопрос. Сначала экспериментальным путем было показано, что гены Pax-6 мыши и дрозофилы являются взаимозаменяемыми. Швейцарские ученые активировали ген Pax-6 дрозофилы в необычных местах, таких как ноги, крылья или усики, и обнаружили, что это приводит к формированию тканей глаза! Затем они установили, что мышиный ген Pax-6 может индуцировать образование глазной ткани у дрозофил. Таким образом, эти гены имеют одинаковые функции, а не только очень похожие последовательности. Вспомните, в третьей главе мы говорили о том, что никакой ген не может сохраняться во времени без поддержки со стороны естественного отбора. По какой-то причине функция и последовательность белка Pax-6 сохранялась на протяжении длительного периода эволюции животных — более 500 млн лет.
Причина сохранности гена Pax-6 стала ясна в результате серии экспериментов, посвященных исследованию роли этого гена в образовании глаз у других животных. Изучение гена Pax-6 кальмаров и различных червей, таких как планарии и ленточные черви, показало, что ген также участвует в формировании сложных или простых глаз у этих животных.
Поскольку Pax-6 задействован в развитии глаз у столь широкого круга организмов, очень маловероятно, что все они стали использовать этот ген случайно. Участие гена Pax-6 в развитии глаза должно иметь исторические причины. Это означает, что общий предшественник всех этих животных использовал Pax-6 для создания каких-то, возможно очень примитивных, глаз. И все удивительные и сложные глаза, развившиеся у потомков этого общего предка, эволюционировали именно на этом основании.
Следующий вопрос, на который необходимо ответить, если мы хотим воссоздать картину эволюции сложных органов, заключается в том, что же это было за основание. Какие элементы, в дальнейшем использовавшиеся для эволюции более сложных глаз, уже существовали у общего предка животных?
Об этих элементах нам известно достаточно много. Глаза любого типа состоят из регистрирующих свет клеток, называемых фоторецепторными клетками, и пигментных клеток, определяющих угол падения света на фоторецепторные клетки. Таким образом, резонно предположить, что самые примитивные глаза состояли из этих двух типов клеток. Именно такое предположение и сделал Дарвин: «Самый простой орган, который можно было бы назвать глазом, состоит из зрительного нерва, окруженного пигментными клетками и покрытого прозрачной кожей, но без хрусталика или преломляющего тела».
Такие простые двухклеточные глаза действительно существуют. Они были обнаружены у личинок некоторых существ, таких как морские черви нереиды (Platynereis dumerilii). На второй день развития оплодотворенной яйцеклетки личинка имеет пару двухклеточных глаз, «пристально глядящих» с передней стороны туловища (рис. 8.3, верхний ряд).
Рис. 8.3. Простые и более сложные глаза у морских червей. На второй день развития у личинки нереиды (вверху слева) уже существует пара простых глаз, каждый из которых состоит всего из двух клеток (вверху справа). У взрослого червя образуются две пары глаз (внизу слева), состоящих из гораздо большего числа клеток, организованных в форме чаши (внизу справа). В формировании обоих типов глаз задействованы одинаковые гены. Верхние рисунки, а также нижний правый рисунок любезно предоставлены Детлевом Арендтом из Европейской молекулярно-биологической лаборатории в Гейдельберге (из статьи Arendt et al., 2002, Development 129:1143, с изм.); нижний левый рисунок предоставлен Бенжамином Прюдоммом из Медицинского института Говарда Хьюза и Университета Висконсина.
Но простота строения этих глаз обманчива. Они построены из тех же компонентов, что и более сложные и совершенные глаза. Например, регистрация света фоторецепторными клетками этих простых глаз основана на действии опсинов — тех самых зрительных пигментов, о которых мы говорили в предыдущих главах. Все животные используют опсины для регистрации света. Объяснить этот факт можно единственным образом: опсин существовал уже в примитивных глазах общего предшественника большинства животных и с тех пор используется для детекции света во всех типах глаз.
Картину формирования и эволюции более сложных глаз исследовали на примере тех же личинок нереиды. Рядом с двухклеточными глазами личинки в какой-то момент начинают формироваться более крупные глаза взрослой особи, имеющие форму чаши и состоящие из гораздо большего числа фоторецепторных и пигментных клеток (рис. 8.3, нижний ряд). Сложность в данном случае является результатом организации большего количества таких же клеток в трехмерном пространстве — тот же строительный материал, другая конструкция. А для строительства используются те же инструменты. В этом процессе участвует ген Pax-6 и еще как минимум два других гена, таких же как у дрозофил и позвоночных. Создание более крупного, но все еще примитивного глаза взрослого червя из тех же основных типов клеток, а также использование тех же генов, что служат для построения более сложных фасеточных и камерных глаз, демонстрирует нам путь создания и эволюции сложных органов. Анализируя этот процесс, мы видим, что сложные органы строятся путем сборки большого количества клеток всего нескольких типов и что в ходе эволюции для построения глаз современных животных продолжали использоваться те же типы клеток и те же гены. Для создания глаз с различным строением у разных животных применяются те же «строительные кирпичики» и те же «инструменты».