Поэтому, быть может, следовало бы рассматривать его как скорость потока? Но тогда получается, что скорость с импульсом можно связать двояким образом, ведь с равным правом можно было бы считать, что скоростью должно быть отношение импульса к массе. Эти две возможности разнятся на вектор-потенциал.
Оказывается, те же две возможности имелись еще в классической физике, и в ней тоже было найдено, что импульс можно определить двумя путями. Один можно назвать «кинематическим импульсом», но для абсолютной ясности я в этой лекции буду его называть «mv-импульсом». Это импульс, получаемый от перемножения массы на скорость. Другой, более математичный, более отвлеченный импульс, именуемый иногда «динамическим импульсом», а я его буду называть «р-импульс». Итак, у нас есть две возможности:
mv-импульс=mv, (19.14)
р-импульс=тv+А. (19,15)
И вот оказывается, что в квантовой механике, включающей магнитные поля, с оператором градиента связан именно р-импульс, так что оператор скорости это (19.13).
Здесь я хотел бы немного отклониться от темы и пояснить, почему так получается—отчего в квантовой механике должно быть нечто похожее на (19.15). Волновая функция меняется со временем, следуя уравнению Шредингера (19.3). Если бы я внезапно изменил векторный потенциал, то в первое мгновение волновая функция не изменилась бы, а изменилась бы только скорость ее изменения. Теперь представьте себе, что случится в следующих обстоятельствах. Пусть имеется длинный соленоид, в котором я создаю поток магнитного поля (поля В), как показано на фиг. 19.2.
Фиг. 19.2. Электрическое поле снаружи соленоида, ток в котором увеличивается.
А поблизости сидит заряженная частица. Допустим, что этот поток почти мгновенно с нуля вырастает до какого-то значения. Сперва векторный потенциал равен нулю, а потом я его включаю. Это означает, что я внезапно создаю круговой вектор-потенциал А. Вы помните, что криволинейный интеграл от А вдоль петли это то же самое, что поток поля В сквозь петлю [см. гл. 14, § 1 (вып. 5)]. И что же происходит, когда я мгновенно включаю векторный потенциал? Согласно квантовомеханическому уравнению, внезапное изменение А не вызывает внезапного изменения y; волновая функция пока та же самая. Значит, и градиент не изменился.
Но вспомните, что происходит электрически, когда я внезапно включаю поток. В течение краткого времени, пока поток растет, возникает электрическое поле, контурный интеграл от которого равен скорости изменения потока во времени
Е=-дA/дt. (19.16)
Если поток резко меняется, то электрическое поле достигает огромной величины и оказывает сильное воздействие на частицу. Эта сила равна произведению заряда на электрическое поле; стало быть, в момент появления потока частица получает полный импульс (т. е. изменение в mv), равный -qА. Иными словами, если вы подействуете на заряд векторным потенциалом, включив его внезапно, то этот заряд немедленно схватит mv-импульс, равный -qА. Но имеется нечто, не меняющееся немедленно,— это разность между mvи -qА.Стало быть, сумма p=mv+qAи есть то, что не меняется, если вы подвергаете вектор-потенциал внезапному изменению. Именно эту величину мы именуем p-импульсом, именно она играет важную роль в классической динамике; она же оказывается существенной и в квантовой механике. Эта величина зависит от характера волновой функции и является преемником оператора
при наличии магнитного поля.
§ 4. Смысл волновой функции
Когда Шредингер впервые открыл свое уравнение, он открыл заодно, что закон сохранения (19.8) есть следствие этого уравнения. Но он неправильно решил, что Р это плотность электрического заряда электрона, a J — плотность электрического тока, т. е. он думал, что электроны взаимодействуют с электромагнитным полем через эти заряды и токи. Решая свои уравнения для атома водорода и вычисляя y, он не вычислял никакой амплитуды (в то время еще не было амплитуд), а толковал это совершенно иначе. Атомное ядро было стационарно, вокруг же него текли токи; заряды Р и токи J генерировали электромагнитные поля, и все вместе это излучало свет. Но вскоре, решая задачу за задачей, он понял, что рассуждает не вполне правильно. И именно в этот момент Борн выдвинул весьма нетривиальную идею. Именно Борн правильно (насколько нам известно) отождествил y в уравнении Шредингера с амплитудой вероятности, предположив, что квадрат амплитуды — это не плотность заряда, а всего лишь вероятность (на единицу объема) обнаружить там электрон и что если вы находите электрон в некотором месте, то там окажется и весь его заряд. Вся эта идея принадлежит Борну.
Волновая функция y(r) электрона в атоме не описывает, стало быть, размазанного электрона с плавно меняющейся плотностью заряда. Электрон может быть либо здесь, либо там, либо где-то еще, но где бы он ни был, он всегда—точечный заряд. Но, с другой стороны, представим себе случай, когда огромное число частиц находится в одном и том же состоянии, очень большое их число с одной и той же волновой функцией. Что тогда? Одна из них будет здесь, другая — там, и вероятность обнаружить любую из них в данном месте пропорциональна yy*. Но поскольку частиц так много, то, если я посмотрю в какой-нибудь объем dxdydz, я, вообще говоря, обнаружу там примерно yy*dxdydz частиц. Итак, когда y— волновая функция каждой из огромного количества частиц, поголовно пребывающих в одном и том же состоянии, то в этом случае yy* можно отождествлять с плотностью частиц. Если в этих условиях все частицы несут одинаковые заряды q, то мы можем пойти дальше и отождествить y*y с плотностью электричества. Обычно, если yy* имеет размерность плотности вероятности, то yy* надо умножить на q, чтобы получить размерность плотности заряда. Для наших теперешних целей мы можем включить этот постоянный множитель в y и принять за плотность электрического заряда само yy*. Если помнить об этом, то J^ (тот ток вероятности, который я вычислил) можно будет считать просто плотностью электрического тока.
Итак, когда в одном и том же состоянии может находиться очень много частиц, возможно иное физическое толкование волновых функций. Плотность заряда и электрический ток могут быть вычислены прямо из волновых функций, и волновые функции приобретают физический смысл, который распространяется на классические, макроскопические ситуации.
Нечто подобное может случиться и с нейтральными частицами. Если у нас имеется волновая функция отдельного фотона, то это — амплитуда того, что он будет обнаружен где-то. Хотя мы и не писали его, однако существует уравнение для фотонной волновой функции, аналогичное уравнению Шредингера для электрона. Фотонное уравнение попросту совпадает с уравнениями Максвелла для электромагнитного поля, а волновая функция — с векторным потенциалом А. Волновая функция оказывается обычным векторным потенциалом. Физика квантов света совпадаете классической физикой, потому что фотоны суть невзаимодействующие бозе-частицы и многие из них могут пребывать в одинаковом состоянии; более того, как вы знаете, они любят бывать в одинаковом состоянии. В момент, когда мириады их окажутся в одном и том же состоянии (т. е. в одной и той же электромагнитной волне), вы сможете непосредственно измерить волновую функцию (т. е. векторный потенциал). Конечно, исторически все шло иным путем. Первые наблюдения были проведены при таких обстоятельствах, когда было много фотонов в одинаковом состоянии, и тем самым удалось открыть правильные уравнения для отдельного фотона, наблюдая непосредственно своими глазами природу волновой функции на макроскопическом уровне.
Трудность с электроном состоит в том, что вы не можете поместить в одно и то же состояние больше одного электрона. Поэтому очень долго считалось, что волновая функция уравнения Шредингера никогда не будет иметь макроскопического представления, подобного макроскопическому представлению амплитуды для фотонов. Но теперь стало ясно, что явление сверхпроводимости представляет именно такой случай.
§ 5. Сверхпроводимость
Вы знаете, что очень многие металлы ниже определенной температуры (температура у каждого металла своя) становятся сверхпроводящими. Если вы как следует снизите температуру то металлы начинают проводить электричество без всякого сопротивления. Это явление наблюдалось у очень многих металлов, но не у всех, и теория этого явления причинила немало хлопот. Понадобилось довольно долгое время, чтобы разобраться, что происходит внутри сверхпроводников, и я опишу здесь только то, что будет нужно для наших нынешних целей. Оказывается, что из-за взаимодействия электронов с колебаниями атомов в решетке возникает слабое эффективное притяжение между электронами. Грубо говоря, электроны в итоге взаимодействия образуют связанные пары.