Рейтинговые книги
Читем онлайн 9. Квантовая механика II - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 54 55 56 57 58 59 60

Дивер и Фейрбэнк, проделав свой опыт, обнаружили, что поток действительно квантуется, но фундаментальная единица равна половине той, которую предсказал Лондон. Тот же резуль­тат получили Долл и Набауэр. Сперва это выглядело очень таинственно, но теперь стало ясно, отчего так вышло. Соглас­но теории сверхпроводимости Бардина, Купера и Шриффера, то q, которое стоит в (19.29), это заряд пары электронов, т. е. равно 2qe. Фундаментальная единица потока равна

т. е. равна половине того, что было предсказано Лондоном. Теперь все сходится, и измерения свидетельствуют о существо­вании предсказанного чисто квантовомеханического, но круп­номасштабного явления.

§ 8. Динамика сверхпроводимости

Эффект Мейсснера и квантование потока подтверждают наши общие представления. Для полноты стоит еще продемонстри­ровать, как с этой точки зрения выглядели бы полные уравне­ния сверхпроводящей жидкости,— получается довольно инте­ресно. До сих пор я подставлял выражение для y только в урав­нения плотности заряда и тока. Но если я их подставлю в полное уравнение Шредингера, то получу уравнения для r и q. Интересно поглядеть, что из этого выйдет, потому что перед нами сейчас «жидкость» электронных пар с плотностью заряда r и с таинственной q; мы можем посмотреть, как выглядят уравнения такой «жидкости»! Итак, подставим волновую функ­цию (19.17) в уравнение Шредингера (19.3) и вспомним, что r и q это вещественнее функции от х, у и z. Если мы отделим вещественную часть от мнимой, то уравнений станет два. Чтобы запись была короче, я, следуя уравнению (19.19), напишу

Тогда одно из двух уравнений примет вид

Поскольку rv это и есть J [см. (19.18)], то мы просто еще раз получили уравнение непрерывности. Второе же уравнение говорит об изменении q:

Те из вас, кто хорошо знаком с гидродинамикой (думаю, очень немногие), в этом уравнении узнают уравнение движения электрически заряженной жидкости, если только отождествить hq с «потенциалом скоростей»; но только в последнем члене, который должен быть энергией сжатия жидкости, имеется до­вольно странная зависимость от плотности р. Во всяком случае, это уравнение утверждает, что скорость изменения величины hqдается членом с кинетической энергией (т/2)v2плюс член с потенциальной энергий qj плюс добавочный член с множите­лем h2, который мы назовем «квантовомеханической энергией». Мы видели, что внутри сверхпроводника электростатические силы поддерживают r очень однородным, поэтому во всех прак­тических применениях этим членом почти наверняка можно пре­небречь при условии, что имеется только одна сверхпроводящая область. Если между двумя сверхпроводниками имеется гра­ница (или есть другие обстоятельства, за счет которых r может начать резко меняться), то этот член может стать существенным. Для тех, кто не так уж знаком с уравнениями гидродинамики, я попробую переписать (19.33) в том виде, который позволит яснее видеть физику. Я использую (19.31), чтобы q выразить через v. Беря от всего уравнения (19.33) градиент и выражая с помощью (19.31) Сq через А и v, я получу

Что же означает это уравнение? Вспомним, во-первых, что

Затем заметим, что если взять ротор от уравнения (19.19), то получится

поскольку ротор градиента всегда нуль. Но СXA — это маг­нитное поле В, так что два первых члена можно записать в виде

q/m(E+vXB).

Наконец, вы должны уяснить себе, что дv/дt обозначает ско­рость изменения скорости жидкости в данной точке. Если же вас интересует отдельная частица, то ее ускорение выразится полной производной от v (или, как иногда говорят в динамике жидкостей, «сопутствующим ускорением»), связанной с дv/дt формулой [см. гл. 40, § 2 (вып. 7)]

В правой части (19.34) стоит тот же член (v·С)v. Если перенести его влево, то (19.34) перепишется так:

Затем из (19.36) следует

Это и есть уравнения движения сверхпроводящей электрон­ной жидкости. Первое уравнение — это просто закон Ньютона для заряженной жидкости в электромагнитном поле. Оно ут­верждает, что ускорение каждой частицы жидкости с зарядом q вызывается действием обычной лоренцевой силы q(E+vXB) плюс добавочная сила, являющаяся градиентом какого-то таин­ственного квантовомеханического потенциала; эта сила обычно мала и становится заметной только при соприкосновении двух разных сверхпроводников. Второе уравнение утверждает, что жидкость «идеальна» — ротор обладает нулевой дивергенцией (у В дивергенция всегда нуль). Это означает, что скорость может быть выражена через потенциал скоростей. Обычно для идеаль­ной жидкости пишут СXv =0, но для идеальной заряженной жид­кости в магнитном поле это уравнение обращается в (19.39).

Итак, уравнение Шредингера для электронных пар в сверх­проводнике дает нам уравнения движения электрически заря­женной идеальной жидкости. Теория сверхпроводимости сов­падает с задачей гидродинамики заряженной жидкости. Если вы хотите решить какую-либо задачу, касающуюся сверхпровод­ников, вы берете эти уравнения для жидкости [или равноценную им пару (19.32) и (19.33)] и сочетаете их с уравнениями Мак­свелла, чтобы получить поля. (Заряды и токи, которыми вы пользуетесь, чтобы узнать поля, должны, естественно, включать как заряды и токи от сверхпроводника, так заряды и токи от внешних источников.)

Кстати, я считаю, что уравнение (19.38) не очень-то правиль­но, в него следует добавить член с плотностью. Он определяется не квантовой механикой, а вытекает из обычной энергии, связан­ной с вариациями плотности, так же как в уравнении для обыч­ной жидкости должна стоять плотность потенциальной энергии, пропорциональная квадрату отклонения r от r0 (невозмущенной плотности, которая в нашем случае равна также плотности за­ряда кристаллической решетки). Поскольку должны наблюдать­ся силы, пропорциональные градиенту этой энергии, то в (19.38) обязан стоять еще один член, пропорциональный С(r-r0)2. В нашем анализе он не появился, потому что возникает он от взаимодействия между частицами, которым я, применяя прибли­жение независимых частиц, пренебрег. Но это та самая сила, па которую я сослался, когда делал качественное утверждение о том, что электростатические силы стремятся сохранить r вдоль сверхпроводника почти неизменным.

§ 9. Переходы Джозефсона

И вот напоследок я перехожу к разбору очень интересного случая, впервые отмеченного Джозефсоном, к анализу того, что бывает при контакте двух сверхпроводников. Пусть у нас есть два сверхпроводника, связанные тонким слоем изолятора (фиг. 19.6).

Фиг. 19.6. Два сверхпроводника, разделенных тонким изолятором.

Теперь такое устройство называется «переходом Джозефсона». Если изолирующий слой толст, электроны не могут пройти через него, но если он достаточно тонок, то элект­роны могут иметь заметную квантовомеханическую амплитуду перескока. Это попросту новый пример квантовомеханического проникновения через барьер. Джозефсон проанализировал та­кой случай и выяснил, что при этом должно происходить немало странных явлений.

Для анализа такого контакта я обозначу амплитуду того, что электрон окажется на одной стороне, через y1, а того, что на другой,— через y2. В сверхпроводящем состоянии волновая функция y1 — это общая волновая функция всех электронов с одной стороны, а y2 — соответствующая функция с другой стороны. Эту задачу можно решать для сверхпроводников раз­ного сорта, но мы ограничимся самым простым случаем, когда вещество по обе стороны одно и то же, — так что соединение са­мое простое и симметричное. И пусть пока никакого магнитного поля нет. Тогда связь между этими двумя амплитудами должна быть такой:

Постоянная К характеризует данный переход. Если бы К была равна нулю, то эта пара уравнений попросту описывала бы наинизшее энергетическое состояние (с энергией U) каж­дого сверхпроводника. Но обе стороны связаны амплитудой К, выражающей возможность утечки из одной стороны в другую (это как раз известная нам по двухуровневым системам ампли­туда «переброса»). Если обе стороны одинаковы, то U1 будет равно U2, и я имею право их просто вычесть. Но теперь пред­положим, что мы подсоединили две сверхпроводящие области к двум полюсам батарейки, так что к переходу оказалась при­ложенной разность потенциалов V. Тогда U1-U2=qV. Для удобства я могу выбрать нуль энергии посредине между U1 и U2, и тогда уравнения обратятся в

1 ... 51 52 53 54 55 56 57 58 59 60
На этой странице вы можете бесплатно читать книгу 9. Квантовая механика II - Ричард Фейнман бесплатно.
Похожие на 9. Квантовая механика II - Ричард Фейнман книги

Оставить комментарий