в случае стационарного случайного процесса X (t ) при весьма широких условиях является состоятельной оценкой математического ожидания E x (t ) = m (т. е. сходится при Т ®¥ к истинному значению оцениваемой величины m ); аналогично этому выборочная корреляционная функция
,
где t > 0, при широких условиях является состоятельной оценкой корреляционной функции B (t)= Ex (t ) X (t + t).
Однако Фурье преобразование функции — так называемая периодограмма IT (l) процесса X (t ) — уже не представляет собой состоятельной оценки спектральной плотности f (l), являющейся преобразованием Фурье функции В (t); при больших значениях Т периодограмма IT (l) ведёт себя крайне нерегулярно и при Т ® ¥ она не стремится ни к какому пределу. Поэтому С. а. с. п. включает в себя ряд специальных приёмов построения состоятельных оценок спектральной плотности f (l) по наблюдённым значениям одной реализации стационарного процесса X (t ), большинство из которых основано на использовании сглаживания периодограммы процесса по сравнительно узкой области частот l.
При исследовании статистических свойств оценок вероятностных характеристик стационарных случайных процессов очень полезными оказываются дополнительные допущения о природе X (t ) (например, допущение о том, что все конечномерные распределения значений процесса X (t ) являются нормальными распределениями вероятностей). Большое развитие получили также исследования по С. а. с. п., в которых предполагается, что изучаемый процесс X (t ) является марковским процессом того или иного типа, или компонентой многомерного марковского процесса, или компонентой многомерного процесса, удовлетворяющего определённой системе стохастических дифференциальных уравнений.
Лит.: Дженкинс Г., Ватте Д., Спектральный анализ и его приложения, пер. с англ., в. 1—2, М., 1971—72; Хеннан Э., Анализ временных рядов, пер. с англ., М., 1964; его же, Многомерные временные ряды, пер. с англ., М., 1974: Липцер Р. Ш., Ширяев А. Н., Статистика случайных процессов (нелинейная фильтрация и смежные вопросы), М., 1974.
А. М. Яглом.
Статистический ансамбль
Статисти'ческий анса'мбль, совокупность сколь угодно большого числа одинаковых физических систем многих частиц («копий» данной системы), находящихся в одинаковых макроскопических состояниях; при этом микроскопические состояния системы могут принимать все возможные значения, совместимые с заданными значениями макроскопических параметров, определяющих её макроскопическое состояние. Примеры С. а. — энергетически изолированные системы при заданном значении полной энергии (микроканонический ансамбль ), системы в контакте с термостатом заданной температуры (канонический ансамбль ), системы в контакте с термостатом и резервуаром частиц (большой канонический ансамбль). С. а. — основное понятие статистической физики , позволяющее применить методы теории вероятностей.
Статистический вес
Статисти'ческий вес, в квантовой механике и квантовой статистике — число различных квантовых состояний с данной энергией, т. е. кратность состояния. Если энергия принимает непрерывный ряд значений, под С. в. понимают число состояний в данном интервале энергий. В классической статистике С. в. называют величину элемента фазового объёма системы. См. Статистическая физика .
Статистический институт
Статисти'ческий институ'т международный, занимается развитием и усовершенствованием статистических методов и их применением в различных областях знаний. Основан в 1885. Организационная работа С. и. выполняется Постоянным бюро, которое находится в Гааге. В составе С. и. (середина 70-х гг.) свыше 700 действительных членов более чем из 70 стран (в т. ч. из СССР и др. социалистических стран), специалисты в области социально-экономической и математической статистики, а также руководители национальных статистических учреждений и организаций. Каждые 2 года С. и. проводит сессии, на которых заслушиваются и обсуждаются научные сообщения по проблемам различных отраслей статистики. Первая сессия состоялась в Риме в 1887, 40-я — в 1975 в Варшаве. Материалы сессий С. и. печатаются в «Бюллетенях института». Статьи по отдельным проблемам статистики (в основном математической) и текущая информация о научной жизни публикуются в журнале «Международное статистическое обозрение» («International statistical review», с 1933). До 1-й мировой войны 1914—18 С. и. был центром, международной статистики, занимался сбором и обработкой статистических данных отдельных стран, готовил рекомендации по сопоставимости данных. В 1919—33 он осуществлял эту деятельность параллельно с органами Лиги Наций . С созданием статистического аппарата ООН С. и. полностью переключился на вопросы статистической теории и методологии. Институт готовит кадры статистиков для развивающихся стран. В 70-е гг. сформировались 3 ассоциации как автономные секции С. и.: Международная ассоциация по применению статистики в физических науках, Международная ассоциация муниципальных статистиков, Международная ассоциация специалистов по выборочному методу.
Лит.: Рябушкин Т., Международная статистика, М., 1965.
Т. В. Рябушкин.
Статистический оператор
Статисти'ческий опера'тор, матрица плотности, оператор, с помощью которого можно вычислить среднее значение любой физической величины в квантовой статистической физике и, в частности, в квантовой механике . С. о. описывает состояние системы, не основанное на полном (в смысле квантовой механики) наборе данных о системе (смесь состояний ).
Статистических испытаний метод
Статисти'ческих испыта'ний ме'тод , метод вычислительной и прикладной математики, основанный на моделировании случайных величин и построении статистических оценок для искомых величин; то же, что Монте-Карло метод . Принято считать, что С. и. м. возник в 1944, когда в связи с работами по созданию атомных реакторов американские учёные Дж. фон Нейман и С. Улам начали широко применять аппарат теории вероятностей для решения прикладных задач с помощью ЭВМ. Первоначально С. и. м. использовался главным образом для решения сложных задач теории переноса излучения и нейтронной физики, где традиционные численные методы оказались мало пригодными. Затем его влияние распространилось на больший класс задач статистической физики, очень разных по своему содержанию. С. и. м. применяется для решения задач теории игр, теории массового обслуживания и математической экономики, задач теории передачи сообщений при наличии помех и т.д. Для решения детерминированной задачи по С. и. м. прежде всего строят вероятностную модель, представляют искомую величину, например многомерный интеграл, в виде математического ожидания функционала от случайного процесса, который затем моделируется на ЭВМ. Хорошо известны вероятностные модели для вычисления интегралов, для решения интегральных уравнений 2-го рода, для решения систем линейных алгебраических уравнений, для решения краевых задач для эллиптических уравнений, для оценки собственных значений линейных операторов и т.д. Выбором вероятностной модели можно распорядиться для получения оценки с малой погрешностью. Особую роль в различных приложениях С. и. м. играет моделирование случайных величин с заданными распределениями. Как правило, такое моделирование осуществляется путём преобразования одного или нескольких независимых значений случайного числа a, распределённого равномерно в интервале (0,1). Последовательности «выборочных» значений a обычно получают на ЭВМ с помощью теоретико-числовых алгоритмов, среди которых наибольшее распространение получил «метод вычетов». Такие числа называются «псевдослучайными», они проверяются статистическими тестами и решением типовых задач. Если в расчёте по С. и. м. моделируются случайные величины, определяемые реальным содержанием явления, то расчёт представляет собой процесс «прямого моделирования». Такой расчёт неэффективен, если изучению подлежат редкие события, т.к. реальный процесс содержит о них мало информации. Эта неэффективность обычно проявляется в слишком большой величине вероятностной погрешности (дисперсии) случайных оценок искомых величин. Разработано много способов уменьшения дисперсии указанных оценок в рамках С. и. м. Почти все они основаны на модификации моделирования с помощью информации о «функции ценности» значений случайных величин относительно вычисляемых величин. С. и. м. оказал и продолжает оказывать существенное влияние на развитие др. методов вычислительной математики (например, на развитие методов численного интегрирования) и при решении многих задач успешно сочетается с др. вычислительными методами и дополняет их. Более специальные математические вопросы, связанные с С. и. м., см. в ст. Статистическое моделирование .