Рейтинговые книги
Читем онлайн Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 95 96 97 98 99 100 101 102 103 ... 125

Неожиданная значимость простых физических и математических моделей для понимания эволюции: биологическая эволюция как предмет статистической физики

В предыдущем разделе мы рассмотрели множественность структур и процессов, которые являются определяющим аспектом новой концепции эволюции. Упрощенно говоря, эта множественность значительно увеличивает энтропию эволюционной биологии. Тем не менее анализ данных, получаемых в областях геномики и системной биологии, выявляет в равной степени заметную противоположную, «антиэнтропийную» тенденцию к структурированию эволюционной теории. Было обнаружено несколько универсальных распределений и зависимостей, таких как распределение скорости генной эволюции, связь между эволюцией и экспрессией генов и распределение степени связности узлов разнообразных сетей. Более того, некоторые из этих универсалий могут быть легко получены из простых математических моделей эволюции, очень похожих на модели, используемые в статистической физике. Эти модели становятся все более общими по мере того, как они объединяются и совместно объясняют универсальные зависимости, первоначально казавшиеся несвязанными, например распределение скорости генной эволюции совместно с антикорреляцией между эволюционной скоростью и экспрессией, или законы масштабирования для семейств генов совместно с масштабированием по функциональным классам.

Имеется удивительно простое общее объяснение этой неожиданной применимости простых моделей для объяснения эволюции геномов. Эволюционная геномика имеет дело с большими ансамблями объектов (генов, белков), которые можно для многих целей рассматривать как слабо взаимодействующие и перемещающиеся (то есть эволюционирующие) по независимым траекториям. Соответственно, принципы статистической физики столь же применимы к генетическим ансамблям, сколь и к ансамблям молекул. Естественно, статистический подход к эволюционным явлениям подвержен тем же ограничениям, что и аналогичные подходы в физике, а именно эти модели недостаточны для объяснения конкретных биологических явлений, часто связанных с небольшим набором генов, а не с большим ансамблем. Кроме того, взаимодействие между генами, эпистаз, часто вносит существенный вклад в эволюцию[138]. Тем не менее примечательно, что современная геномика и системная биология, раскрывая чрезвычайно сложную, многогранную картину эволюции, в то же время позволяют выработать и простые обобщенные модели. Очень заманчиво предложить еще один новый вариант знаменитой фразы: ничто в эволюции – и в популяционной генетике – не имеет смысла, кроме как в свете статистической физики.

Воспроизводимость эволюции: детерминизм и стохастика эволюционного процесса

Пространство генотипов, даже если рассматривать только относительно простые, небольшие геномы, невообразимо огромно (скажем, для прокариот с геномом в 1 миллион пар оснований имеется 41 000 000 возможных последовательностей, число, значительно превосходящее по величине все, что существует на самом деле в наблюдаемой части Вселенной, например общее число протонов или электронов). Какая часть этих генотипов на самом деле жизнеспособна и, следовательно, могла бы сыграть роль в эволюции? Или, чтобы задать вопрос осмысленным в контексте эволюции образом, какова доля всех возможных траекторий в пространстве генотипов, которые открыты эволюционному процессу? Вышесказанное – формализованная постановка любимого вопроса Стивена Джей Гулда (Gould, 1997b): что бы мы увидели, если бы имели возможность заново проиграть пластинку эволюции? Ответ, данный не только Гулдом, но и Франсуа Жакобом в знаменитой статье об эволюции-«ремесленнике» (Jacob, 1977), Дэном Деннетом в «Опасной идее Дарвина» (Dennett, 1996) и многими другими, был таков: мы бы не увидели ничего подобного реально существующей биосфере, потому что вся эволюция – сплошная цепь непредвиденных стечений обстоятельств. При описании общей картины эволюции Деннет вполне обоснованно обращается к физическому явлению детерминированного хаоса: каждое событие, которое происходит в процессе эволюции, безусловно, имеет конкретные физические причины, но малые возмущения способны вызвать большие изменения в ходе эволюции, так что далекие результаты становятся совершенно непредсказуемыми.

По-прежнему трудно дать уверенный общий ответ на этот ключевой вопрос эволюции, однако имеющиеся ограниченные прямые исследования эволюционных траекторий как индивидуальных белков, так и бактериальных популяций принесли неожиданные результаты (O’Maille et al., 2008; Ostrowski et al., 2008; Weinreich et al., 2006). Похоже, что в большинстве случаев лишь небольшая часть из теоретически возможных путей на самом деле доступна для эволюции, так что эволюция представляется менее стохастической, более детерминированной и более предсказуемой, чем предполагалось ранее (см. рис. 13-2). Эти наблюдения позволяют предположить, что адаптивные ландшафты по меньшей мере некоторых из развивающиеся генов и геномов являются существенно неровными, так что большинство путей прерывается глубокими оврагами низкой приспособленности и, таким образом, запрещены (O’Maille et al., 2008). Основной подоплекой этого, вероятно, является эпистаз, то есть взаимодействие между различными частями одного и того же гена или между различными генами: на пересеченном ландшафте одна мутация часто приводит к фатальному падению приспособленности, но вторая, путем эпистаза, способна привести в область высокой приспособленности. Эпистаз представляется одним из важнейших факторов, поддерживающих целостность эволюционирующих биологических систем, которая проявляется в многих аспектах эволюции (Kogenaru et al., 2009). Как отмечалось в предыдущем разделе, эпистаз неизбежно ограничивает применимость представления эволюционирующих геномов ансамблями слабо взаимодействующих «частиц». Эпистатическое взаимодействие сильно ограничивает диапазон доступных эволюционных траекторий – но насколько сильно, еще предстоит выяснить с помощью дальнейшего моделирования и экспериментальных исследований эволюции. Вполне может оказаться, что модель детерминированного хаоса верна и что обнаруженные ограничения на практике мало влияют на предсказуемость эволюции, то есть на результат метафорического повторного проигрывания пластинки. Доступные траектории, даже если они и составляют лишь малую долю теоретически возможных, все же могут оказаться столь многочисленными и разнообразными, что эволюция окажется на практике непредсказуемой. Важнейшей и пока нерешенной проблемой оказывается взаимосвязь между доступными траекториями. Если эти траектории кластеризуются на небольшом участке геномного пространства-времени, эволюция может быть квазидетерминированной[139]; если же доступные траектории беспорядочно разбросаны, (не)предсказуемость эволюции не будет сильно зависеть от подобных ограничений (см. рис. 13-2).

Скорее всего, результаты детального анализа эволюционных ландшафтов и траекторий на них будут различаться для эволюции на различных уровнях и в различных ситуациях, в согласии с концепцией плюрализма эволюционных процессов, обсуждавшейся выше. Кроме того, следует еще раз подчеркнуть, что соотношение между детерминизмом и стохастичностью определяется давлением отбора, то есть эффективным размером популяции. В эффективно бесконечной популяции эволюция фактически детерминирована, в то время как в небольших популяциях эволюция происходит стохастически в рамках фундаментальных ограничений. Чтобы исключить всякую возможность недоразумений, отметим, что, даже если эволюция и может быть описана как квазидетерминированный процесс, такое описание не имеет ничего общего с телеологическими представлениями. Тем не менее канализация в смысле Уоддингтона (см. гл. 2) представляется интересной аналогией.

Сложное и неоднозначное соответствие генома и фенотипа

Рис. 13-2. Пересеченный адаптивный ландшафт и доступные эволюционные траектории: а — квазидетерминированная эволюция: канализация доступных траекторий; б — стохастическая эволюция: случайное распределение доступных траекторий. Сплошные линии – монотонно восходящие траектории, доступные для эволюции, движимой исключительно отбором. Пунктирные линии – немонотонные траектории, доступные только с участием генетического дрейфа.

Принято считать, что геном (генотип) определяет фенотип организма (с некоторым участием эпигенеза), фенотип жестко контролируется отбором, a фенотипические изменения не имеют эволюционных последствий. Сравнительная геномика и системная биология показывают, что все эти утверждения не являются истиной в последней инстанции, и такие упрощенные обобщения оставляют в стороне ключевые биологические явления. Отсутствие простой детерминированной связи между фенотипом и генотипом выражается по крайней мере в двух взаимодополнительных аспектах их взаимоотношений:

1 ... 95 96 97 98 99 100 101 102 103 ... 125
На этой странице вы можете бесплатно читать книгу Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин бесплатно.

Оставить комментарий